![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkp1lem4 | Structured version Visualization version GIF version |
Description: Lemma for wlkp1 26634. (Contributed by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ V) |
wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
wlkp1.n | ⊢ 𝑁 = (#‘𝐹) |
wlkp1.e | ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
wlkp1.x | ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
wlkp1.u | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
wlkp1.h | ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
wlkp1.q | ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) |
wlkp1.s | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
Ref | Expression |
---|---|
wlkp1lem4 | ⊢ (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp1.w | . . 3 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
2 | eqid 2651 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 2 | wlkf 26566 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom (iEdg‘𝐺)) |
4 | eqid 2651 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
5 | 4 | wlkp 26568 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) |
6 | 3, 5 | jca 553 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺))) |
7 | 1, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺))) |
8 | wlkp1.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
9 | wlkp1.s | . . . . . 6 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
10 | 8, 9 | eleqtrrd 2733 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (Vtx‘𝑆)) |
11 | 10 | elfvexd 6260 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) |
12 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺))) → 𝑆 ∈ V) |
13 | wlkp1.h | . . . 4 ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) | |
14 | simprl 809 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺))) → 𝐹 ∈ Word dom (iEdg‘𝐺)) | |
15 | snex 4938 | . . . . 5 ⊢ {〈𝑁, 𝐵〉} ∈ V | |
16 | unexg 7001 | . . . . 5 ⊢ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ {〈𝑁, 𝐵〉} ∈ V) → (𝐹 ∪ {〈𝑁, 𝐵〉}) ∈ V) | |
17 | 14, 15, 16 | sylancl 695 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺))) → (𝐹 ∪ {〈𝑁, 𝐵〉}) ∈ V) |
18 | 13, 17 | syl5eqel 2734 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺))) → 𝐻 ∈ V) |
19 | wlkp1.q | . . . 4 ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) | |
20 | ovex 6718 | . . . . . . 7 ⊢ (0...(#‘𝐹)) ∈ V | |
21 | fvex 6239 | . . . . . . 7 ⊢ (Vtx‘𝐺) ∈ V | |
22 | 20, 21 | fpm 7932 | . . . . . 6 ⊢ (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → 𝑃 ∈ ((Vtx‘𝐺) ↑pm (0...(#‘𝐹)))) |
23 | 22 | ad2antll 765 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺))) → 𝑃 ∈ ((Vtx‘𝐺) ↑pm (0...(#‘𝐹)))) |
24 | snex 4938 | . . . . 5 ⊢ {〈(𝑁 + 1), 𝐶〉} ∈ V | |
25 | unexg 7001 | . . . . 5 ⊢ ((𝑃 ∈ ((Vtx‘𝐺) ↑pm (0...(#‘𝐹))) ∧ {〈(𝑁 + 1), 𝐶〉} ∈ V) → (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) ∈ V) | |
26 | 23, 24, 25 | sylancl 695 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺))) → (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) ∈ V) |
27 | 19, 26 | syl5eqel 2734 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺))) → 𝑄 ∈ V) |
28 | 12, 18, 27 | 3jca 1261 | . 2 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺))) → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) |
29 | 7, 28 | mpdan 703 | 1 ⊢ (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∪ cun 3605 ⊆ wss 3607 {csn 4210 {cpr 4212 〈cop 4216 class class class wbr 4685 dom cdm 5143 Fun wfun 5920 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ↑pm cpm 7900 Fincfn 7997 0cc0 9974 1c1 9975 + caddc 9977 ...cfz 12364 #chash 13157 Word cword 13323 Vtxcvtx 25919 iEdgciedg 25920 Edgcedg 25984 Walkscwlks 26548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ifp 1033 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-fzo 12505 df-hash 13158 df-word 13331 df-wlks 26551 |
This theorem is referenced by: wlkp1 26634 |
Copyright terms: Public domain | W3C validator |