MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkwwlksur Structured version   Visualization version   GIF version

Theorem wlkwwlksur 26652
Description: Lemma 3 for wlkwwlkbij2 26654. (Contributed by Alexander van der Vekens, 23-Jul-2018.) (Revised by AV, 16-Apr-2021.)
Hypotheses
Ref Expression
wlkwwlkbij.t 𝑇 = {𝑝 ∈ (Walks‘𝐺) ∣ ((#‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)}
wlkwwlkbij.w 𝑊 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
wlkwwlkbij.f 𝐹 = (𝑡𝑇 ↦ (2nd𝑡))
Assertion
Ref Expression
wlkwwlksur ((𝐺 ∈ USPGraph ∧ 𝑃𝑉𝑁 ∈ ℕ0) → 𝐹:𝑇onto𝑊)
Distinct variable groups:   𝐺,𝑝,𝑡,𝑤   𝑁,𝑝,𝑡,𝑤   𝑃,𝑝,𝑡,𝑤   𝑡,𝑇,𝑤   𝑡,𝑉   𝑡,𝑊   𝑤,𝐹   𝑤,𝑉   𝐹,𝑝   𝑇,𝑝   𝑊,𝑝
Allowed substitution hints:   𝐹(𝑡)   𝑉(𝑝)   𝑊(𝑤)

Proof of Theorem wlkwwlksur
Dummy variables 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgrupgr 25964 . . 3 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph )
2 wlkwwlkbij.t . . . 4 𝑇 = {𝑝 ∈ (Walks‘𝐺) ∣ ((#‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)}
3 wlkwwlkbij.w . . . 4 𝑊 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
4 wlkwwlkbij.f . . . 4 𝐹 = (𝑡𝑇 ↦ (2nd𝑡))
52, 3, 4wlkwwlkfun 26650 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑃𝑉𝑁 ∈ ℕ0) → 𝐹:𝑇𝑊)
61, 5syl3an1 1356 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉𝑁 ∈ ℕ0) → 𝐹:𝑇𝑊)
7 fveq1 6147 . . . . . . 7 (𝑤 = 𝑝 → (𝑤‘0) = (𝑝‘0))
87eqeq1d 2623 . . . . . 6 (𝑤 = 𝑝 → ((𝑤‘0) = 𝑃 ↔ (𝑝‘0) = 𝑃))
98, 3elrab2 3348 . . . . 5 (𝑝𝑊 ↔ (𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑃))
10 wlklnwwlkn 26639 . . . . . . . . . . 11 (𝐺 ∈ USPGraph → (∃𝑓(𝑓(Walks‘𝐺)𝑝 ∧ (#‘𝑓) = 𝑁) ↔ 𝑝 ∈ (𝑁 WWalksN 𝐺)))
11 df-br 4614 . . . . . . . . . . . . 13 (𝑓(Walks‘𝐺)𝑝 ↔ ⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺))
12 vex 3189 . . . . . . . . . . . . . . . . 17 𝑓 ∈ V
13 vex 3189 . . . . . . . . . . . . . . . . 17 𝑝 ∈ V
1412, 13op1st 7121 . . . . . . . . . . . . . . . 16 (1st ‘⟨𝑓, 𝑝⟩) = 𝑓
1514eqcomi 2630 . . . . . . . . . . . . . . 15 𝑓 = (1st ‘⟨𝑓, 𝑝⟩)
1615fveq2i 6151 . . . . . . . . . . . . . 14 (#‘𝑓) = (#‘(1st ‘⟨𝑓, 𝑝⟩))
1716eqeq1i 2626 . . . . . . . . . . . . 13 ((#‘𝑓) = 𝑁 ↔ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁)
1812, 13op2nd 7122 . . . . . . . . . . . . . . . . 17 (2nd ‘⟨𝑓, 𝑝⟩) = 𝑝
1918eqcomi 2630 . . . . . . . . . . . . . . . 16 𝑝 = (2nd ‘⟨𝑓, 𝑝⟩)
2019fveq1i 6149 . . . . . . . . . . . . . . 15 (𝑝‘0) = ((2nd ‘⟨𝑓, 𝑝⟩)‘0)
2120eqeq1i 2626 . . . . . . . . . . . . . 14 ((𝑝‘0) = 𝑃 ↔ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃)
22 opex 4893 . . . . . . . . . . . . . . . 16 𝑓, 𝑝⟩ ∈ V
2322a1i 11 . . . . . . . . . . . . . . 15 ((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) → ⟨𝑓, 𝑝⟩ ∈ V)
24 simpll 789 . . . . . . . . . . . . . . . . . 18 (((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) ∧ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃) → ⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺))
25 simpr 477 . . . . . . . . . . . . . . . . . . 19 ((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) → (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁)
2625anim1i 591 . . . . . . . . . . . . . . . . . 18 (((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) ∧ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃) → ((#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁 ∧ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃))
2719a1i 11 . . . . . . . . . . . . . . . . . 18 (((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) ∧ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃) → 𝑝 = (2nd ‘⟨𝑓, 𝑝⟩))
2824, 26, 27jca31 556 . . . . . . . . . . . . . . . . 17 (((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) ∧ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃) → ((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ ((#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁 ∧ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃)) ∧ 𝑝 = (2nd ‘⟨𝑓, 𝑝⟩)))
29 eleq1 2686 . . . . . . . . . . . . . . . . . . 19 (𝑢 = ⟨𝑓, 𝑝⟩ → (𝑢 ∈ (Walks‘𝐺) ↔ ⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺)))
30 fveq2 6148 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = ⟨𝑓, 𝑝⟩ → (1st𝑢) = (1st ‘⟨𝑓, 𝑝⟩))
3130fveq2d 6152 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = ⟨𝑓, 𝑝⟩ → (#‘(1st𝑢)) = (#‘(1st ‘⟨𝑓, 𝑝⟩)))
3231eqeq1d 2623 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = ⟨𝑓, 𝑝⟩ → ((#‘(1st𝑢)) = 𝑁 ↔ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁))
33 fveq2 6148 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = ⟨𝑓, 𝑝⟩ → (2nd𝑢) = (2nd ‘⟨𝑓, 𝑝⟩))
3433fveq1d 6150 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = ⟨𝑓, 𝑝⟩ → ((2nd𝑢)‘0) = ((2nd ‘⟨𝑓, 𝑝⟩)‘0))
3534eqeq1d 2623 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = ⟨𝑓, 𝑝⟩ → (((2nd𝑢)‘0) = 𝑃 ↔ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃))
3632, 35anbi12d 746 . . . . . . . . . . . . . . . . . . 19 (𝑢 = ⟨𝑓, 𝑝⟩ → (((#‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃) ↔ ((#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁 ∧ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃)))
3729, 36anbi12d 746 . . . . . . . . . . . . . . . . . 18 (𝑢 = ⟨𝑓, 𝑝⟩ → ((𝑢 ∈ (Walks‘𝐺) ∧ ((#‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ↔ (⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ ((#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁 ∧ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃))))
3833eqeq2d 2631 . . . . . . . . . . . . . . . . . 18 (𝑢 = ⟨𝑓, 𝑝⟩ → (𝑝 = (2nd𝑢) ↔ 𝑝 = (2nd ‘⟨𝑓, 𝑝⟩)))
3937, 38anbi12d 746 . . . . . . . . . . . . . . . . 17 (𝑢 = ⟨𝑓, 𝑝⟩ → (((𝑢 ∈ (Walks‘𝐺) ∧ ((#‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ∧ 𝑝 = (2nd𝑢)) ↔ ((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ ((#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁 ∧ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃)) ∧ 𝑝 = (2nd ‘⟨𝑓, 𝑝⟩))))
4028, 39syl5ibrcom 237 . . . . . . . . . . . . . . . 16 (((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) ∧ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃) → (𝑢 = ⟨𝑓, 𝑝⟩ → ((𝑢 ∈ (Walks‘𝐺) ∧ ((#‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ∧ 𝑝 = (2nd𝑢))))
4140impancom 456 . . . . . . . . . . . . . . 15 (((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) ∧ 𝑢 = ⟨𝑓, 𝑝⟩) → (((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃 → ((𝑢 ∈ (Walks‘𝐺) ∧ ((#‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ∧ 𝑝 = (2nd𝑢))))
4223, 41spcimedv 3278 . . . . . . . . . . . . . 14 ((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) → (((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃 → ∃𝑢((𝑢 ∈ (Walks‘𝐺) ∧ ((#‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ∧ 𝑝 = (2nd𝑢))))
4321, 42syl5bi 232 . . . . . . . . . . . . 13 ((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) → ((𝑝‘0) = 𝑃 → ∃𝑢((𝑢 ∈ (Walks‘𝐺) ∧ ((#‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ∧ 𝑝 = (2nd𝑢))))
4411, 17, 43syl2anb 496 . . . . . . . . . . . 12 ((𝑓(Walks‘𝐺)𝑝 ∧ (#‘𝑓) = 𝑁) → ((𝑝‘0) = 𝑃 → ∃𝑢((𝑢 ∈ (Walks‘𝐺) ∧ ((#‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ∧ 𝑝 = (2nd𝑢))))
4544exlimiv 1855 . . . . . . . . . . 11 (∃𝑓(𝑓(Walks‘𝐺)𝑝 ∧ (#‘𝑓) = 𝑁) → ((𝑝‘0) = 𝑃 → ∃𝑢((𝑢 ∈ (Walks‘𝐺) ∧ ((#‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ∧ 𝑝 = (2nd𝑢))))
4610, 45syl6bir 244 . . . . . . . . . 10 (𝐺 ∈ USPGraph → (𝑝 ∈ (𝑁 WWalksN 𝐺) → ((𝑝‘0) = 𝑃 → ∃𝑢((𝑢 ∈ (Walks‘𝐺) ∧ ((#‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ∧ 𝑝 = (2nd𝑢)))))
4746imp32 449 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑃)) → ∃𝑢((𝑢 ∈ (Walks‘𝐺) ∧ ((#‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ∧ 𝑝 = (2nd𝑢)))
48 fveq2 6148 . . . . . . . . . . . . . . 15 (𝑝 = 𝑢 → (1st𝑝) = (1st𝑢))
4948fveq2d 6152 . . . . . . . . . . . . . 14 (𝑝 = 𝑢 → (#‘(1st𝑝)) = (#‘(1st𝑢)))
5049eqeq1d 2623 . . . . . . . . . . . . 13 (𝑝 = 𝑢 → ((#‘(1st𝑝)) = 𝑁 ↔ (#‘(1st𝑢)) = 𝑁))
51 fveq2 6148 . . . . . . . . . . . . . . 15 (𝑝 = 𝑢 → (2nd𝑝) = (2nd𝑢))
5251fveq1d 6150 . . . . . . . . . . . . . 14 (𝑝 = 𝑢 → ((2nd𝑝)‘0) = ((2nd𝑢)‘0))
5352eqeq1d 2623 . . . . . . . . . . . . 13 (𝑝 = 𝑢 → (((2nd𝑝)‘0) = 𝑃 ↔ ((2nd𝑢)‘0) = 𝑃))
5450, 53anbi12d 746 . . . . . . . . . . . 12 (𝑝 = 𝑢 → (((#‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃) ↔ ((#‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)))
5554elrab 3346 . . . . . . . . . . 11 (𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ ((#‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)} ↔ (𝑢 ∈ (Walks‘𝐺) ∧ ((#‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)))
5655anbi1i 730 . . . . . . . . . 10 ((𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ ((#‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)} ∧ 𝑝 = (2nd𝑢)) ↔ ((𝑢 ∈ (Walks‘𝐺) ∧ ((#‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ∧ 𝑝 = (2nd𝑢)))
5756exbii 1771 . . . . . . . . 9 (∃𝑢(𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ ((#‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)} ∧ 𝑝 = (2nd𝑢)) ↔ ∃𝑢((𝑢 ∈ (Walks‘𝐺) ∧ ((#‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ∧ 𝑝 = (2nd𝑢)))
5847, 57sylibr 224 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ (𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑃)) → ∃𝑢(𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ ((#‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)} ∧ 𝑝 = (2nd𝑢)))
59 df-rex 2913 . . . . . . . 8 (∃𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ ((#‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)}𝑝 = (2nd𝑢) ↔ ∃𝑢(𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ ((#‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)} ∧ 𝑝 = (2nd𝑢)))
6058, 59sylibr 224 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ (𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑃)) → ∃𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ ((#‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)}𝑝 = (2nd𝑢))
612rexeqi 3132 . . . . . . 7 (∃𝑢𝑇 𝑝 = (2nd𝑢) ↔ ∃𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ ((#‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)}𝑝 = (2nd𝑢))
6260, 61sylibr 224 . . . . . 6 ((𝐺 ∈ USPGraph ∧ (𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑃)) → ∃𝑢𝑇 𝑝 = (2nd𝑢))
63 fveq2 6148 . . . . . . . . 9 (𝑡 = 𝑢 → (2nd𝑡) = (2nd𝑢))
64 fvex 6158 . . . . . . . . 9 (2nd𝑢) ∈ V
6563, 4, 64fvmpt 6239 . . . . . . . 8 (𝑢𝑇 → (𝐹𝑢) = (2nd𝑢))
6665eqeq2d 2631 . . . . . . 7 (𝑢𝑇 → (𝑝 = (𝐹𝑢) ↔ 𝑝 = (2nd𝑢)))
6766rexbiia 3033 . . . . . 6 (∃𝑢𝑇 𝑝 = (𝐹𝑢) ↔ ∃𝑢𝑇 𝑝 = (2nd𝑢))
6862, 67sylibr 224 . . . . 5 ((𝐺 ∈ USPGraph ∧ (𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑃)) → ∃𝑢𝑇 𝑝 = (𝐹𝑢))
699, 68sylan2b 492 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑝𝑊) → ∃𝑢𝑇 𝑝 = (𝐹𝑢))
7069ralrimiva 2960 . . 3 (𝐺 ∈ USPGraph → ∀𝑝𝑊𝑢𝑇 𝑝 = (𝐹𝑢))
71703ad2ant1 1080 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉𝑁 ∈ ℕ0) → ∀𝑝𝑊𝑢𝑇 𝑝 = (𝐹𝑢))
72 dffo3 6330 . 2 (𝐹:𝑇onto𝑊 ↔ (𝐹:𝑇𝑊 ∧ ∀𝑝𝑊𝑢𝑇 𝑝 = (𝐹𝑢)))
736, 71, 72sylanbrc 697 1 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉𝑁 ∈ ℕ0) → 𝐹:𝑇onto𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  wral 2907  wrex 2908  {crab 2911  Vcvv 3186  cop 4154   class class class wbr 4613  cmpt 4673  wf 5843  ontowfo 5845  cfv 5847  (class class class)co 6604  1st c1st 7111  2nd c2nd 7112  0cc0 9880  0cn0 11236  #chash 13057   UPGraph cupgr 25871   USPGraph cuspgr 25936  Walkscwlks 26362   WWalksN cwwlksn 26587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1012  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-edg 25840  df-uhgr 25849  df-upgr 25873  df-uspgr 25938  df-wlks 26365  df-wwlks 26591  df-wwlksn 26592
This theorem is referenced by:  wlkwwlkbij  26653
  Copyright terms: Public domain W3C validator