MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wofib Structured version   Visualization version   GIF version

Theorem wofib 9012
Description: The only sets which are well-ordered forwards and backwards are finite sets. (Contributed by Mario Carneiro, 30-Jan-2014.) (Revised by Mario Carneiro, 23-May-2015.)
Hypothesis
Ref Expression
wofib.1 𝐴 ∈ V
Assertion
Ref Expression
wofib ((𝑅 Or 𝐴𝐴 ∈ Fin) ↔ (𝑅 We 𝐴𝑅 We 𝐴))

Proof of Theorem wofib
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wofi 8770 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 We 𝐴)
2 cnvso 6142 . . . 4 (𝑅 Or 𝐴𝑅 Or 𝐴)
3 wofi 8770 . . . 4 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 We 𝐴)
42, 3sylanb 583 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 We 𝐴)
51, 4jca 514 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝑅 We 𝐴𝑅 We 𝐴))
6 weso 5549 . . . 4 (𝑅 We 𝐴𝑅 Or 𝐴)
76adantr 483 . . 3 ((𝑅 We 𝐴𝑅 We 𝐴) → 𝑅 Or 𝐴)
8 peano2 7605 . . . . . . . . 9 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
9 sucidg 6272 . . . . . . . . 9 (𝑦 ∈ ω → 𝑦 ∈ suc 𝑦)
10 vex 3500 . . . . . . . . . . . . 13 𝑧 ∈ V
11 vex 3500 . . . . . . . . . . . . 13 𝑦 ∈ V
1210, 11brcnv 5756 . . . . . . . . . . . 12 (𝑧 E 𝑦𝑦 E 𝑧)
13 epel 5472 . . . . . . . . . . . 12 (𝑦 E 𝑧𝑦𝑧)
1412, 13bitri 277 . . . . . . . . . . 11 (𝑧 E 𝑦𝑦𝑧)
15 eleq2 2904 . . . . . . . . . . 11 (𝑧 = suc 𝑦 → (𝑦𝑧𝑦 ∈ suc 𝑦))
1614, 15syl5bb 285 . . . . . . . . . 10 (𝑧 = suc 𝑦 → (𝑧 E 𝑦𝑦 ∈ suc 𝑦))
1716rspcev 3626 . . . . . . . . 9 ((suc 𝑦 ∈ ω ∧ 𝑦 ∈ suc 𝑦) → ∃𝑧 ∈ ω 𝑧 E 𝑦)
188, 9, 17syl2anc 586 . . . . . . . 8 (𝑦 ∈ ω → ∃𝑧 ∈ ω 𝑧 E 𝑦)
19 dfrex2 3242 . . . . . . . 8 (∃𝑧 ∈ ω 𝑧 E 𝑦 ↔ ¬ ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦)
2018, 19sylib 220 . . . . . . 7 (𝑦 ∈ ω → ¬ ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦)
2120nrex 3272 . . . . . 6 ¬ ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦
22 ordom 7592 . . . . . . . 8 Ord ω
23 eqid 2824 . . . . . . . . 9 OrdIso(𝑅, 𝐴) = OrdIso(𝑅, 𝐴)
2423oicl 8996 . . . . . . . 8 Ord dom OrdIso(𝑅, 𝐴)
25 ordtri1 6227 . . . . . . . 8 ((Ord ω ∧ Ord dom OrdIso(𝑅, 𝐴)) → (ω ⊆ dom OrdIso(𝑅, 𝐴) ↔ ¬ dom OrdIso(𝑅, 𝐴) ∈ ω))
2622, 24, 25mp2an 690 . . . . . . 7 (ω ⊆ dom OrdIso(𝑅, 𝐴) ↔ ¬ dom OrdIso(𝑅, 𝐴) ∈ ω)
27 wofib.1 . . . . . . . . . . 11 𝐴 ∈ V
2823oion 9003 . . . . . . . . . . 11 (𝐴 ∈ V → dom OrdIso(𝑅, 𝐴) ∈ On)
2927, 28mp1i 13 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → dom OrdIso(𝑅, 𝐴) ∈ On)
30 simpr 487 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ω ⊆ dom OrdIso(𝑅, 𝐴))
3129, 30ssexd 5231 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ω ∈ V)
3223oiiso 9004 . . . . . . . . . . . . 13 ((𝐴 ∈ V ∧ 𝑅 We 𝐴) → OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴))
3327, 32mpan 688 . . . . . . . . . . . 12 (𝑅 We 𝐴 → OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴))
34 isocnv2 7087 . . . . . . . . . . . 12 (OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴) ↔ OrdIso(𝑅, 𝐴) Isom E , 𝑅(dom OrdIso(𝑅, 𝐴), 𝐴))
3533, 34sylib 220 . . . . . . . . . . 11 (𝑅 We 𝐴 → OrdIso(𝑅, 𝐴) Isom E , 𝑅(dom OrdIso(𝑅, 𝐴), 𝐴))
36 wefr 5548 . . . . . . . . . . 11 (𝑅 We 𝐴𝑅 Fr 𝐴)
37 isofr 7098 . . . . . . . . . . . 12 (OrdIso(𝑅, 𝐴) Isom E , 𝑅(dom OrdIso(𝑅, 𝐴), 𝐴) → ( E Fr dom OrdIso(𝑅, 𝐴) ↔ 𝑅 Fr 𝐴))
3837biimpar 480 . . . . . . . . . . 11 ((OrdIso(𝑅, 𝐴) Isom E , 𝑅(dom OrdIso(𝑅, 𝐴), 𝐴) ∧ 𝑅 Fr 𝐴) → E Fr dom OrdIso(𝑅, 𝐴))
3935, 36, 38syl2an 597 . . . . . . . . . 10 ((𝑅 We 𝐴𝑅 We 𝐴) → E Fr dom OrdIso(𝑅, 𝐴))
4039adantr 483 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → E Fr dom OrdIso(𝑅, 𝐴))
41 1onn 8268 . . . . . . . . . 10 1o ∈ ω
42 ne0i 4303 . . . . . . . . . 10 (1o ∈ ω → ω ≠ ∅)
4341, 42mp1i 13 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ω ≠ ∅)
44 fri 5520 . . . . . . . . 9 (((ω ∈ V ∧ E Fr dom OrdIso(𝑅, 𝐴)) ∧ (ω ⊆ dom OrdIso(𝑅, 𝐴) ∧ ω ≠ ∅)) → ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦)
4531, 40, 30, 43, 44syl22anc 836 . . . . . . . 8 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦)
4645ex 415 . . . . . . 7 ((𝑅 We 𝐴𝑅 We 𝐴) → (ω ⊆ dom OrdIso(𝑅, 𝐴) → ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦))
4726, 46syl5bir 245 . . . . . 6 ((𝑅 We 𝐴𝑅 We 𝐴) → (¬ dom OrdIso(𝑅, 𝐴) ∈ ω → ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦))
4821, 47mt3i 151 . . . . 5 ((𝑅 We 𝐴𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ∈ ω)
49 ssid 3992 . . . . 5 dom OrdIso(𝑅, 𝐴) ⊆ dom OrdIso(𝑅, 𝐴)
50 ssnnfi 8740 . . . . 5 ((dom OrdIso(𝑅, 𝐴) ∈ ω ∧ dom OrdIso(𝑅, 𝐴) ⊆ dom OrdIso(𝑅, 𝐴)) → dom OrdIso(𝑅, 𝐴) ∈ Fin)
5148, 49, 50sylancl 588 . . . 4 ((𝑅 We 𝐴𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ∈ Fin)
52 simpl 485 . . . . . 6 ((𝑅 We 𝐴𝑅 We 𝐴) → 𝑅 We 𝐴)
5323oien 9005 . . . . . 6 ((𝐴 ∈ V ∧ 𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ≈ 𝐴)
5427, 52, 53sylancr 589 . . . . 5 ((𝑅 We 𝐴𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ≈ 𝐴)
55 enfi 8737 . . . . 5 (dom OrdIso(𝑅, 𝐴) ≈ 𝐴 → (dom OrdIso(𝑅, 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin))
5654, 55syl 17 . . . 4 ((𝑅 We 𝐴𝑅 We 𝐴) → (dom OrdIso(𝑅, 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin))
5751, 56mpbid 234 . . 3 ((𝑅 We 𝐴𝑅 We 𝐴) → 𝐴 ∈ Fin)
587, 57jca 514 . 2 ((𝑅 We 𝐴𝑅 We 𝐴) → (𝑅 Or 𝐴𝐴 ∈ Fin))
595, 58impbii 211 1 ((𝑅 Or 𝐴𝐴 ∈ Fin) ↔ (𝑅 We 𝐴𝑅 We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398   = wceq 1536  wcel 2113  wne 3019  wral 3141  wrex 3142  Vcvv 3497  wss 3939  c0 4294   class class class wbr 5069   E cep 5467   Or wor 5476   Fr wfr 5514   We wwe 5516  ccnv 5557  dom cdm 5558  Ord word 6193  Oncon0 6194  suc csuc 6196   Isom wiso 6359  ωcom 7583  1oc1o 8098  cen 8509  Fincfn 8512  OrdIsocoi 8976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-om 7584  df-wrecs 7950  df-recs 8011  df-1o 8105  df-er 8292  df-en 8513  df-fin 8516  df-oi 8977
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator