MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wofib Structured version   Visualization version   GIF version

Theorem wofib 8394
Description: The only sets which are well-ordered forwards and backwards are finite sets. (Contributed by Mario Carneiro, 30-Jan-2014.) (Revised by Mario Carneiro, 23-May-2015.)
Hypothesis
Ref Expression
wofib.1 𝐴 ∈ V
Assertion
Ref Expression
wofib ((𝑅 Or 𝐴𝐴 ∈ Fin) ↔ (𝑅 We 𝐴𝑅 We 𝐴))

Proof of Theorem wofib
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wofi 8153 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 We 𝐴)
2 cnvso 5633 . . . 4 (𝑅 Or 𝐴𝑅 Or 𝐴)
3 wofi 8153 . . . 4 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 We 𝐴)
42, 3sylanb 489 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 We 𝐴)
51, 4jca 554 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝑅 We 𝐴𝑅 We 𝐴))
6 weso 5065 . . . 4 (𝑅 We 𝐴𝑅 Or 𝐴)
76adantr 481 . . 3 ((𝑅 We 𝐴𝑅 We 𝐴) → 𝑅 Or 𝐴)
8 peano2 7033 . . . . . . . . 9 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
9 sucidg 5762 . . . . . . . . 9 (𝑦 ∈ ω → 𝑦 ∈ suc 𝑦)
10 vex 3189 . . . . . . . . . . . . 13 𝑧 ∈ V
11 vex 3189 . . . . . . . . . . . . 13 𝑦 ∈ V
1210, 11brcnv 5265 . . . . . . . . . . . 12 (𝑧 E 𝑦𝑦 E 𝑧)
13 epel 4988 . . . . . . . . . . . 12 (𝑦 E 𝑧𝑦𝑧)
1412, 13bitri 264 . . . . . . . . . . 11 (𝑧 E 𝑦𝑦𝑧)
15 eleq2 2687 . . . . . . . . . . 11 (𝑧 = suc 𝑦 → (𝑦𝑧𝑦 ∈ suc 𝑦))
1614, 15syl5bb 272 . . . . . . . . . 10 (𝑧 = suc 𝑦 → (𝑧 E 𝑦𝑦 ∈ suc 𝑦))
1716rspcev 3295 . . . . . . . . 9 ((suc 𝑦 ∈ ω ∧ 𝑦 ∈ suc 𝑦) → ∃𝑧 ∈ ω 𝑧 E 𝑦)
188, 9, 17syl2anc 692 . . . . . . . 8 (𝑦 ∈ ω → ∃𝑧 ∈ ω 𝑧 E 𝑦)
19 dfrex2 2990 . . . . . . . 8 (∃𝑧 ∈ ω 𝑧 E 𝑦 ↔ ¬ ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦)
2018, 19sylib 208 . . . . . . 7 (𝑦 ∈ ω → ¬ ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦)
2120nrex 2994 . . . . . 6 ¬ ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦
22 ordom 7021 . . . . . . . 8 Ord ω
23 eqid 2621 . . . . . . . . 9 OrdIso(𝑅, 𝐴) = OrdIso(𝑅, 𝐴)
2423oicl 8378 . . . . . . . 8 Ord dom OrdIso(𝑅, 𝐴)
25 ordtri1 5715 . . . . . . . 8 ((Ord ω ∧ Ord dom OrdIso(𝑅, 𝐴)) → (ω ⊆ dom OrdIso(𝑅, 𝐴) ↔ ¬ dom OrdIso(𝑅, 𝐴) ∈ ω))
2622, 24, 25mp2an 707 . . . . . . 7 (ω ⊆ dom OrdIso(𝑅, 𝐴) ↔ ¬ dom OrdIso(𝑅, 𝐴) ∈ ω)
27 wofib.1 . . . . . . . . . . 11 𝐴 ∈ V
2823oion 8385 . . . . . . . . . . 11 (𝐴 ∈ V → dom OrdIso(𝑅, 𝐴) ∈ On)
2927, 28mp1i 13 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → dom OrdIso(𝑅, 𝐴) ∈ On)
30 simpr 477 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ω ⊆ dom OrdIso(𝑅, 𝐴))
3129, 30ssexd 4765 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ω ∈ V)
3223oiiso 8386 . . . . . . . . . . . . 13 ((𝐴 ∈ V ∧ 𝑅 We 𝐴) → OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴))
3327, 32mpan 705 . . . . . . . . . . . 12 (𝑅 We 𝐴 → OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴))
34 isocnv2 6535 . . . . . . . . . . . 12 (OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴) ↔ OrdIso(𝑅, 𝐴) Isom E , 𝑅(dom OrdIso(𝑅, 𝐴), 𝐴))
3533, 34sylib 208 . . . . . . . . . . 11 (𝑅 We 𝐴 → OrdIso(𝑅, 𝐴) Isom E , 𝑅(dom OrdIso(𝑅, 𝐴), 𝐴))
36 wefr 5064 . . . . . . . . . . 11 (𝑅 We 𝐴𝑅 Fr 𝐴)
37 isofr 6546 . . . . . . . . . . . 12 (OrdIso(𝑅, 𝐴) Isom E , 𝑅(dom OrdIso(𝑅, 𝐴), 𝐴) → ( E Fr dom OrdIso(𝑅, 𝐴) ↔ 𝑅 Fr 𝐴))
3837biimpar 502 . . . . . . . . . . 11 ((OrdIso(𝑅, 𝐴) Isom E , 𝑅(dom OrdIso(𝑅, 𝐴), 𝐴) ∧ 𝑅 Fr 𝐴) → E Fr dom OrdIso(𝑅, 𝐴))
3935, 36, 38syl2an 494 . . . . . . . . . 10 ((𝑅 We 𝐴𝑅 We 𝐴) → E Fr dom OrdIso(𝑅, 𝐴))
4039adantr 481 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → E Fr dom OrdIso(𝑅, 𝐴))
41 1onn 7664 . . . . . . . . . 10 1𝑜 ∈ ω
42 ne0i 3897 . . . . . . . . . 10 (1𝑜 ∈ ω → ω ≠ ∅)
4341, 42mp1i 13 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ω ≠ ∅)
44 fri 5036 . . . . . . . . 9 (((ω ∈ V ∧ E Fr dom OrdIso(𝑅, 𝐴)) ∧ (ω ⊆ dom OrdIso(𝑅, 𝐴) ∧ ω ≠ ∅)) → ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦)
4531, 40, 30, 43, 44syl22anc 1324 . . . . . . . 8 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦)
4645ex 450 . . . . . . 7 ((𝑅 We 𝐴𝑅 We 𝐴) → (ω ⊆ dom OrdIso(𝑅, 𝐴) → ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦))
4726, 46syl5bir 233 . . . . . 6 ((𝑅 We 𝐴𝑅 We 𝐴) → (¬ dom OrdIso(𝑅, 𝐴) ∈ ω → ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦))
4821, 47mt3i 141 . . . . 5 ((𝑅 We 𝐴𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ∈ ω)
49 ssid 3603 . . . . 5 dom OrdIso(𝑅, 𝐴) ⊆ dom OrdIso(𝑅, 𝐴)
50 ssnnfi 8123 . . . . 5 ((dom OrdIso(𝑅, 𝐴) ∈ ω ∧ dom OrdIso(𝑅, 𝐴) ⊆ dom OrdIso(𝑅, 𝐴)) → dom OrdIso(𝑅, 𝐴) ∈ Fin)
5148, 49, 50sylancl 693 . . . 4 ((𝑅 We 𝐴𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ∈ Fin)
52 simpl 473 . . . . . 6 ((𝑅 We 𝐴𝑅 We 𝐴) → 𝑅 We 𝐴)
5323oien 8387 . . . . . 6 ((𝐴 ∈ V ∧ 𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ≈ 𝐴)
5427, 52, 53sylancr 694 . . . . 5 ((𝑅 We 𝐴𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ≈ 𝐴)
55 enfi 8120 . . . . 5 (dom OrdIso(𝑅, 𝐴) ≈ 𝐴 → (dom OrdIso(𝑅, 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin))
5654, 55syl 17 . . . 4 ((𝑅 We 𝐴𝑅 We 𝐴) → (dom OrdIso(𝑅, 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin))
5751, 56mpbid 222 . . 3 ((𝑅 We 𝐴𝑅 We 𝐴) → 𝐴 ∈ Fin)
587, 57jca 554 . 2 ((𝑅 We 𝐴𝑅 We 𝐴) → (𝑅 Or 𝐴𝐴 ∈ Fin))
595, 58impbii 199 1 ((𝑅 Or 𝐴𝐴 ∈ Fin) ↔ (𝑅 We 𝐴𝑅 We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  Vcvv 3186  wss 3555  c0 3891   class class class wbr 4613   E cep 4983   Or wor 4994   Fr wfr 5030   We wwe 5032  ccnv 5073  dom cdm 5074  Ord word 5681  Oncon0 5682  suc csuc 5684   Isom wiso 5848  ωcom 7012  1𝑜c1o 7498  cen 7896  Fincfn 7899  OrdIsocoi 8358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-om 7013  df-wrecs 7352  df-recs 7413  df-1o 7505  df-er 7687  df-en 7900  df-fin 7903  df-oi 8359
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator