MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrd2f1tovbij Structured version   Visualization version   GIF version

Theorem wrd2f1tovbij 14327
Description: There is a bijection between words of length two with a fixed first symbol contained in a pair and the symbols contained in a pair together with the fixed symbol. (Contributed by Alexander van der Vekens, 28-Jul-2018.)
Assertion
Ref Expression
wrd2f1tovbij ((𝑉𝑌𝑃𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋})
Distinct variable groups:   𝑃,𝑓,𝑛,𝑤   𝑓,𝑉,𝑛,𝑤   𝑓,𝑋,𝑛,𝑤
Allowed substitution hints:   𝑌(𝑤,𝑓,𝑛)

Proof of Theorem wrd2f1tovbij
Dummy variables 𝑝 𝑡 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrdexg 13874 . . . 4 (𝑉𝑌 → Word 𝑉 ∈ V)
21adantr 483 . . 3 ((𝑉𝑌𝑃𝑉) → Word 𝑉 ∈ V)
3 rabexg 5237 . . 3 (Word 𝑉 ∈ V → {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ∈ V)
4 mptexg 6987 . . 3 ({𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ∈ V → (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)) ∈ V)
52, 3, 43syl 18 . 2 ((𝑉𝑌𝑃𝑉) → (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)) ∈ V)
6 fveqeq2 6682 . . . . . 6 (𝑤 = 𝑢 → ((♯‘𝑤) = 2 ↔ (♯‘𝑢) = 2))
7 fveq1 6672 . . . . . . 7 (𝑤 = 𝑢 → (𝑤‘0) = (𝑢‘0))
87eqeq1d 2826 . . . . . 6 (𝑤 = 𝑢 → ((𝑤‘0) = 𝑃 ↔ (𝑢‘0) = 𝑃))
9 fveq1 6672 . . . . . . . 8 (𝑤 = 𝑢 → (𝑤‘1) = (𝑢‘1))
107, 9preq12d 4680 . . . . . . 7 (𝑤 = 𝑢 → {(𝑤‘0), (𝑤‘1)} = {(𝑢‘0), (𝑢‘1)})
1110eleq1d 2900 . . . . . 6 (𝑤 = 𝑢 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))
126, 8, 113anbi123d 1432 . . . . 5 (𝑤 = 𝑢 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
1312cbvrabv 3494 . . . 4 {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} = {𝑢 ∈ Word 𝑉 ∣ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)}
14 preq2 4673 . . . . . 6 (𝑛 = 𝑝 → {𝑃, 𝑛} = {𝑃, 𝑝})
1514eleq1d 2900 . . . . 5 (𝑛 = 𝑝 → ({𝑃, 𝑛} ∈ 𝑋 ↔ {𝑃, 𝑝} ∈ 𝑋))
1615cbvrabv 3494 . . . 4 {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} = {𝑝𝑉 ∣ {𝑃, 𝑝} ∈ 𝑋}
17 fveqeq2 6682 . . . . . . 7 (𝑡 = 𝑤 → ((♯‘𝑡) = 2 ↔ (♯‘𝑤) = 2))
18 fveq1 6672 . . . . . . . 8 (𝑡 = 𝑤 → (𝑡‘0) = (𝑤‘0))
1918eqeq1d 2826 . . . . . . 7 (𝑡 = 𝑤 → ((𝑡‘0) = 𝑃 ↔ (𝑤‘0) = 𝑃))
20 fveq1 6672 . . . . . . . . 9 (𝑡 = 𝑤 → (𝑡‘1) = (𝑤‘1))
2118, 20preq12d 4680 . . . . . . . 8 (𝑡 = 𝑤 → {(𝑡‘0), (𝑡‘1)} = {(𝑤‘0), (𝑤‘1)})
2221eleq1d 2900 . . . . . . 7 (𝑡 = 𝑤 → ({(𝑡‘0), (𝑡‘1)} ∈ 𝑋 ↔ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋))
2317, 19, 223anbi123d 1432 . . . . . 6 (𝑡 = 𝑤 → (((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) ↔ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)))
2423cbvrabv 3494 . . . . 5 {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}
2524mpteq1i 5159 . . . 4 (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)) = (𝑥 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ↦ (𝑥‘1))
2613, 16, 25wwlktovf1o 14326 . . 3 (𝑃𝑉 → (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)):{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋})
2726adantl 484 . 2 ((𝑉𝑌𝑃𝑉) → (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)):{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋})
28 f1oeq1 6607 . 2 (𝑓 = (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)) → (𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} ↔ (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)):{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}))
295, 27, 28spcedv 3602 1 ((𝑉𝑌𝑃𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wex 1779  wcel 2113  {crab 3145  Vcvv 3497  {cpr 4572  cmpt 5149  1-1-ontowf1o 6357  cfv 6358  0cc0 10540  1c1 10541  2c2 11695  chash 13693  Word cword 13864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865
This theorem is referenced by:  rusgrnumwrdl2  27371
  Copyright terms: Public domain W3C validator