Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdcctswrd Structured version   Visualization version   GIF version

Theorem wrdcctswrd 13419
 Description: The concatenation of two parts of a word yields the word itself. (Contributed by AV, 21-Oct-2018.)
Assertion
Ref Expression
wrdcctswrd ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(#‘𝑊))) → ((𝑊 substr ⟨0, 𝑀⟩) ++ (𝑊 substr ⟨𝑀, (#‘𝑊)⟩)) = 𝑊)

Proof of Theorem wrdcctswrd
StepHypRef Expression
1 simpl 473 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(#‘𝑊))) → 𝑊 ∈ Word 𝑉)
2 elfznn0 12390 . . . . 5 (𝑀 ∈ (0...(#‘𝑊)) → 𝑀 ∈ ℕ0)
3 0elfz 12393 . . . . 5 (𝑀 ∈ ℕ0 → 0 ∈ (0...𝑀))
42, 3syl 17 . . . 4 (𝑀 ∈ (0...(#‘𝑊)) → 0 ∈ (0...𝑀))
54adantl 482 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(#‘𝑊))) → 0 ∈ (0...𝑀))
6 simpr 477 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(#‘𝑊))) → 𝑀 ∈ (0...(#‘𝑊)))
7 lencl 13279 . . . . 5 (𝑊 ∈ Word 𝑉 → (#‘𝑊) ∈ ℕ0)
8 nn0fz0 12394 . . . . 5 ((#‘𝑊) ∈ ℕ0 ↔ (#‘𝑊) ∈ (0...(#‘𝑊)))
97, 8sylib 208 . . . 4 (𝑊 ∈ Word 𝑉 → (#‘𝑊) ∈ (0...(#‘𝑊)))
109adantr 481 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(#‘𝑊))) → (#‘𝑊) ∈ (0...(#‘𝑊)))
11 ccatswrd 13410 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (0 ∈ (0...𝑀) ∧ 𝑀 ∈ (0...(#‘𝑊)) ∧ (#‘𝑊) ∈ (0...(#‘𝑊)))) → ((𝑊 substr ⟨0, 𝑀⟩) ++ (𝑊 substr ⟨𝑀, (#‘𝑊)⟩)) = (𝑊 substr ⟨0, (#‘𝑊)⟩))
121, 5, 6, 10, 11syl13anc 1325 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(#‘𝑊))) → ((𝑊 substr ⟨0, 𝑀⟩) ++ (𝑊 substr ⟨𝑀, (#‘𝑊)⟩)) = (𝑊 substr ⟨0, (#‘𝑊)⟩))
13 swrdid 13382 . . 3 (𝑊 ∈ Word 𝑉 → (𝑊 substr ⟨0, (#‘𝑊)⟩) = 𝑊)
1413adantr 481 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(#‘𝑊))) → (𝑊 substr ⟨0, (#‘𝑊)⟩) = 𝑊)
1512, 14eqtrd 2655 1 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(#‘𝑊))) → ((𝑊 substr ⟨0, 𝑀⟩) ++ (𝑊 substr ⟨𝑀, (#‘𝑊)⟩)) = 𝑊)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ⟨cop 4161  ‘cfv 5857  (class class class)co 6615  0cc0 9896  ℕ0cn0 11252  ...cfz 12284  #chash 13073  Word cword 13246   ++ cconcat 13248   substr csubstr 13250 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-fzo 12423  df-hash 13074  df-word 13254  df-concat 13256  df-substr 13258 This theorem is referenced by:  lencctswrd  13420
 Copyright terms: Public domain W3C validator