MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdexb Structured version   Visualization version   GIF version

Theorem wrdexb 13867
Description: The set of words over a set is a set, bidirectional version. (Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 23-Nov-2018.)
Assertion
Ref Expression
wrdexb (𝑆 ∈ V ↔ Word 𝑆 ∈ V)

Proof of Theorem wrdexb
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 wrdexg 13865 . 2 (𝑆 ∈ V → Word 𝑆 ∈ V)
2 opex 5348 . . . . . . . 8 ⟨0, 𝑠⟩ ∈ V
32snid 4594 . . . . . . 7 ⟨0, 𝑠⟩ ∈ {⟨0, 𝑠⟩}
4 snopiswrd 13864 . . . . . . 7 (𝑠𝑆 → {⟨0, 𝑠⟩} ∈ Word 𝑆)
5 elunii 4836 . . . . . . 7 ((⟨0, 𝑠⟩ ∈ {⟨0, 𝑠⟩} ∧ {⟨0, 𝑠⟩} ∈ Word 𝑆) → ⟨0, 𝑠⟩ ∈ Word 𝑆)
63, 4, 5sylancr 589 . . . . . 6 (𝑠𝑆 → ⟨0, 𝑠⟩ ∈ Word 𝑆)
7 c0ex 10629 . . . . . . 7 0 ∈ V
8 vex 3497 . . . . . . 7 𝑠 ∈ V
97, 8opeluu 5354 . . . . . 6 (⟨0, 𝑠⟩ ∈ Word 𝑆 → (0 ∈ Word 𝑆𝑠 Word 𝑆))
106, 9syl 17 . . . . 5 (𝑠𝑆 → (0 ∈ Word 𝑆𝑠 Word 𝑆))
1110simprd 498 . . . 4 (𝑠𝑆𝑠 Word 𝑆)
1211ssriv 3970 . . 3 𝑆 Word 𝑆
13 uniexg 7460 . . . 4 (Word 𝑆 ∈ V → Word 𝑆 ∈ V)
14 uniexg 7460 . . . 4 ( Word 𝑆 ∈ V → Word 𝑆 ∈ V)
15 uniexg 7460 . . . 4 ( Word 𝑆 ∈ V → Word 𝑆 ∈ V)
1613, 14, 153syl 18 . . 3 (Word 𝑆 ∈ V → Word 𝑆 ∈ V)
17 ssexg 5219 . . 3 ((𝑆 Word 𝑆 Word 𝑆 ∈ V) → 𝑆 ∈ V)
1812, 16, 17sylancr 589 . 2 (Word 𝑆 ∈ V → 𝑆 ∈ V)
191, 18impbii 211 1 (𝑆 ∈ V ↔ Word 𝑆 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wcel 2110  Vcvv 3494  wss 3935  {csn 4560  cop 4566   cuni 4831  0cc0 10531  Word cword 13855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-word 13856
This theorem is referenced by:  efgrcl  18835
  Copyright terms: Public domain W3C validator