MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdexg Structured version   Visualization version   GIF version

Theorem wrdexg 13249
Description: The set of words over a set is a set. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
wrdexg (𝑆𝑉 → Word 𝑆 ∈ V)

Proof of Theorem wrdexg
Dummy variables 𝑠 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrdval 13242 . 2 (𝑆𝑉 → Word 𝑆 = 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)))
2 mapsspw 7838 . . . . . 6 (𝑆𝑚 (0..^𝑙)) ⊆ 𝒫 ((0..^𝑙) × 𝑆)
3 elfzoelz 12408 . . . . . . . . 9 (𝑠 ∈ (0..^𝑙) → 𝑠 ∈ ℤ)
43ssriv 3592 . . . . . . . 8 (0..^𝑙) ⊆ ℤ
5 xpss1 5194 . . . . . . . 8 ((0..^𝑙) ⊆ ℤ → ((0..^𝑙) × 𝑆) ⊆ (ℤ × 𝑆))
64, 5ax-mp 5 . . . . . . 7 ((0..^𝑙) × 𝑆) ⊆ (ℤ × 𝑆)
7 sspwb 4883 . . . . . . 7 (((0..^𝑙) × 𝑆) ⊆ (ℤ × 𝑆) ↔ 𝒫 ((0..^𝑙) × 𝑆) ⊆ 𝒫 (ℤ × 𝑆))
86, 7mpbi 220 . . . . . 6 𝒫 ((0..^𝑙) × 𝑆) ⊆ 𝒫 (ℤ × 𝑆)
92, 8sstri 3597 . . . . 5 (𝑆𝑚 (0..^𝑙)) ⊆ 𝒫 (ℤ × 𝑆)
109rgenw 2924 . . . 4 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)) ⊆ 𝒫 (ℤ × 𝑆)
11 iunss 4532 . . . 4 ( 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)) ⊆ 𝒫 (ℤ × 𝑆) ↔ ∀𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)) ⊆ 𝒫 (ℤ × 𝑆))
1210, 11mpbir 221 . . 3 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)) ⊆ 𝒫 (ℤ × 𝑆)
13 zex 11331 . . . . 5 ℤ ∈ V
14 xpexg 6914 . . . . 5 ((ℤ ∈ V ∧ 𝑆𝑉) → (ℤ × 𝑆) ∈ V)
1513, 14mpan 705 . . . 4 (𝑆𝑉 → (ℤ × 𝑆) ∈ V)
16 pwexg 4815 . . . 4 ((ℤ × 𝑆) ∈ V → 𝒫 (ℤ × 𝑆) ∈ V)
1715, 16syl 17 . . 3 (𝑆𝑉 → 𝒫 (ℤ × 𝑆) ∈ V)
18 ssexg 4769 . . 3 (( 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)) ⊆ 𝒫 (ℤ × 𝑆) ∧ 𝒫 (ℤ × 𝑆) ∈ V) → 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)) ∈ V)
1912, 17, 18sylancr 694 . 2 (𝑆𝑉 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)) ∈ V)
201, 19eqeltrd 2704 1 (𝑆𝑉 → Word 𝑆 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1992  wral 2912  Vcvv 3191  wss 3560  𝒫 cpw 4135   ciun 4490   × cxp 5077  (class class class)co 6605  𝑚 cmap 7803  0cc0 9881  0cn0 11237  cz 11322  ..^cfzo 12403  Word cword 13225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-1st 7116  df-2nd 7117  df-map 7805  df-pm 7806  df-neg 10214  df-z 11323  df-uz 11632  df-fz 12266  df-fzo 12404  df-word 13233
This theorem is referenced by:  wrdexb  13250  wrdexi  13251  wrdnfi  13272  elovmpt2wrd  13281  elovmptnn0wrd  13282  wrd2f1tovbij  13632  frmdbas  17305  frmdplusg  17307  vrmdfval  17309  efgval  18046  frgp0  18089  frgpmhm  18094  vrgpf  18097  vrgpinv  18098  frgpupf  18102  frgpup1  18104  frgpup2  18105  frgpup3lem  18106  frgpnabllem1  18192  frgpnabllem2  18193  ablfaclem1  18400  israg  25487  wksfval  26369  wksv  26379  wwlks  26590  clwwlks  26740  sseqval  30223  upwlksfval  40992
  Copyright terms: Public domain W3C validator