![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wrdnval | Structured version Visualization version GIF version |
Description: Words of a fixed length are mappings from a fixed half-open integer interval. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Proof shortened by AV, 13-May-2020.) |
Ref | Expression |
---|---|
wrdnval | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = (𝑉 ↑𝑚 (0..^𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovexd 6835 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (0..^𝑁) ∈ V) | |
2 | elmapg 8028 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ (0..^𝑁) ∈ V) → (𝑤 ∈ (𝑉 ↑𝑚 (0..^𝑁)) ↔ 𝑤:(0..^𝑁)⟶𝑉)) | |
3 | 1, 2 | syldan 488 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ (𝑉 ↑𝑚 (0..^𝑁)) ↔ 𝑤:(0..^𝑁)⟶𝑉)) |
4 | iswrdi 13487 | . . . . . . . 8 ⊢ (𝑤:(0..^𝑁)⟶𝑉 → 𝑤 ∈ Word 𝑉) | |
5 | 4 | adantl 473 | . . . . . . 7 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) ∧ 𝑤:(0..^𝑁)⟶𝑉) → 𝑤 ∈ Word 𝑉) |
6 | fnfzo0hash 13418 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑤:(0..^𝑁)⟶𝑉) → (♯‘𝑤) = 𝑁) | |
7 | 6 | adantll 752 | . . . . . . 7 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) ∧ 𝑤:(0..^𝑁)⟶𝑉) → (♯‘𝑤) = 𝑁) |
8 | 5, 7 | jca 555 | . . . . . 6 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) ∧ 𝑤:(0..^𝑁)⟶𝑉) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁)) |
9 | 8 | ex 449 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑤:(0..^𝑁)⟶𝑉 → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁))) |
10 | wrdf 13488 | . . . . . . 7 ⊢ (𝑤 ∈ Word 𝑉 → 𝑤:(0..^(♯‘𝑤))⟶𝑉) | |
11 | oveq2 6813 | . . . . . . . 8 ⊢ ((♯‘𝑤) = 𝑁 → (0..^(♯‘𝑤)) = (0..^𝑁)) | |
12 | 11 | feq2d 6184 | . . . . . . 7 ⊢ ((♯‘𝑤) = 𝑁 → (𝑤:(0..^(♯‘𝑤))⟶𝑉 ↔ 𝑤:(0..^𝑁)⟶𝑉)) |
13 | 10, 12 | syl5ibcom 235 | . . . . . 6 ⊢ (𝑤 ∈ Word 𝑉 → ((♯‘𝑤) = 𝑁 → 𝑤:(0..^𝑁)⟶𝑉)) |
14 | 13 | imp 444 | . . . . 5 ⊢ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁) → 𝑤:(0..^𝑁)⟶𝑉) |
15 | 9, 14 | impbid1 215 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑤:(0..^𝑁)⟶𝑉 ↔ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁))) |
16 | 3, 15 | bitrd 268 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ (𝑉 ↑𝑚 (0..^𝑁)) ↔ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁))) |
17 | 16 | abbi2dv 2872 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑉 ↑𝑚 (0..^𝑁)) = {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁)}) |
18 | df-rab 3051 | . 2 ⊢ {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁)} | |
19 | 17, 18 | syl6reqr 2805 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = (𝑉 ↑𝑚 (0..^𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1624 ∈ wcel 2131 {cab 2738 {crab 3046 Vcvv 3332 ⟶wf 6037 ‘cfv 6041 (class class class)co 6805 ↑𝑚 cmap 8015 0cc0 10120 ℕ0cn0 11476 ..^cfzo 12651 ♯chash 13303 Word cword 13469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-er 7903 df-map 8017 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-card 8947 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-n0 11477 df-z 11562 df-uz 11872 df-fz 12512 df-fzo 12652 df-hash 13304 df-word 13477 |
This theorem is referenced by: wrdmap 13514 hashwrdn 13515 |
Copyright terms: Public domain | W3C validator |