Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspniunwspnon Structured version   Visualization version   GIF version

Theorem wspniunwspnon 26688
 Description: The set of nonempty simple paths of fixed length is the double union of the simple paths of the fixed length between different vertices. (Contributed by Alexander van der Vekens, 3-Mar-2018.) (Revised by AV, 16-May-2021.)
Hypothesis
Ref Expression
wspniunwspnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wspniunwspnon ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑁 WSPathsN 𝐺) = 𝑥𝑉 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦))
Distinct variable groups:   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉,𝑦

Proof of Theorem wspniunwspnon
Dummy variables 𝑝 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 11243 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 wspniunwspnon.v . . . . . 6 𝑉 = (Vtx‘𝐺)
32wspthsnwspthsnon 26680 . . . . 5 ((𝑁 ∈ ℕ0𝐺𝑈) → (𝑤 ∈ (𝑁 WSPathsN 𝐺) ↔ ∃𝑥𝑉𝑦𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
41, 3sylan 488 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑤 ∈ (𝑁 WSPathsN 𝐺) ↔ ∃𝑥𝑉𝑦𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
5 wspthsnonn0vne 26682 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅) → 𝑥𝑦)
65ex 450 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅ → 𝑥𝑦))
76adantr 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → ((𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅ → 𝑥𝑦))
8 ne0i 3897 . . . . . . . . . . . 12 (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) → (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅)
97, 8impel 485 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐺𝑈) ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) → 𝑥𝑦)
109necomd 2845 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐺𝑈) ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) → 𝑦𝑥)
1110ex 450 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) → 𝑦𝑥))
1211pm4.71rd 666 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ (𝑦𝑥𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))))
1312rexbidv 3045 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (∃𝑦𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦𝑉 (𝑦𝑥𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))))
14 rexdifsn 4292 . . . . . . 7 (∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦𝑉 (𝑦𝑥𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
1513, 14syl6bbr 278 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (∃𝑦𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
1615rexbidv 3045 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (∃𝑥𝑉𝑦𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
17 vex 3189 . . . . . 6 𝑤 ∈ V
18 eleq1 2686 . . . . . . . 8 (𝑝 = 𝑤 → (𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
1918rexbidv 3045 . . . . . . 7 (𝑝 = 𝑤 → (∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
2019rexbidv 3045 . . . . . 6 (𝑝 = 𝑤 → (∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
2117, 20elab 3333 . . . . 5 (𝑤 ∈ {𝑝 ∣ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)} ↔ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))
2216, 21syl6bbr 278 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (∃𝑥𝑉𝑦𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ 𝑤 ∈ {𝑝 ∣ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)}))
234, 22bitrd 268 . . 3 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑤 ∈ (𝑁 WSPathsN 𝐺) ↔ 𝑤 ∈ {𝑝 ∣ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)}))
2423eqrdv 2619 . 2 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑁 WSPathsN 𝐺) = {𝑝 ∣ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)})
25 dfiunv2 4522 . 2 𝑥𝑉 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦) = {𝑝 ∣ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)}
2624, 25syl6eqr 2673 1 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑁 WSPathsN 𝐺) = 𝑥𝑉 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  {cab 2607   ≠ wne 2790  ∃wrex 2908   ∖ cdif 3552  ∅c0 3891  {csn 4148  ∪ ciun 4485  ‘cfv 5847  (class class class)co 6604  ℕcn 10964  ℕ0cn0 11236  Vtxcvtx 25774   WSPathsN cwwspthsn 26589   WSPathsNOn cwwspthsnon 26590 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1012  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-wlks 26365  df-wlkson 26366  df-trls 26458  df-trlson 26459  df-pths 26481  df-spths 26482  df-spthson 26484  df-wwlks 26591  df-wwlksn 26592  df-wwlksnon 26593  df-wspthsn 26594  df-wspthsnon 26595 This theorem is referenced by:  frgrhash2wsp  27055
 Copyright terms: Public domain W3C validator