![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wsuccl | Structured version Visualization version GIF version |
Description: If 𝑋 is a set with an 𝑅 successor in 𝐴, then its well-founded successor is a member of 𝐴. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
Ref | Expression |
---|---|
wsuccl.1 | ⊢ (𝜑 → 𝑅 We 𝐴) |
wsuccl.2 | ⊢ (𝜑 → 𝑅 Se 𝐴) |
wsuccl.3 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
wsuccl.4 | ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 𝑋𝑅𝑦) |
Ref | Expression |
---|---|
wsuccl | ⊢ (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wsuc 31882 | . 2 ⊢ wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) | |
2 | wsuccl.1 | . . . 4 ⊢ (𝜑 → 𝑅 We 𝐴) | |
3 | weso 5134 | . . . 4 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) |
5 | wsuccl.2 | . . . 4 ⊢ (𝜑 → 𝑅 Se 𝐴) | |
6 | wsuccl.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
7 | wsuccl.4 | . . . 4 ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 𝑋𝑅𝑦) | |
8 | 2, 5, 6, 7 | wsuclem 31895 | . . 3 ⊢ (𝜑 → ∃𝑎 ∈ 𝐴 (∀𝑏 ∈ Pred (◡𝑅, 𝐴, 𝑋) ¬ 𝑏𝑅𝑎 ∧ ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 → ∃𝑐 ∈ Pred (◡𝑅, 𝐴, 𝑋)𝑐𝑅𝑏))) |
9 | 4, 8 | infcl 8435 | . 2 ⊢ (𝜑 → inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) ∈ 𝐴) |
10 | 1, 9 | syl5eqel 2734 | 1 ⊢ (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 ∃wrex 2942 class class class wbr 4685 Or wor 5063 Se wse 5100 We wwe 5101 ◡ccnv 5142 Predcpred 5717 infcinf 8388 wsuccwsuc 31880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-cnv 5151 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-iota 5889 df-riota 6651 df-sup 8389 df-inf 8390 df-wsuc 31882 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |