Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wsuceq123 Structured version   Visualization version   GIF version

Theorem wsuceq123 31734
Description: Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Assertion
Ref Expression
wsuceq123 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐵, 𝑌))

Proof of Theorem wsuceq123
StepHypRef Expression
1 simp1 1059 . . . . 5 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → 𝑅 = 𝑆)
21cnveqd 5287 . . . 4 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → 𝑅 = 𝑆)
3 predeq123 5669 . . . 4 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌))
42, 3syld3an1 1370 . . 3 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌))
5 simp2 1060 . . 3 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → 𝐴 = 𝐵)
64, 5, 1infeq123d 8372 . 2 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅) = inf(Pred(𝑆, 𝐵, 𝑌), 𝐵, 𝑆))
7 df-wsuc 31730 . 2 wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
8 df-wsuc 31730 . 2 wsuc(𝑆, 𝐵, 𝑌) = inf(Pred(𝑆, 𝐵, 𝑌), 𝐵, 𝑆)
96, 7, 83eqtr4g 2679 1 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐵, 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1481  ccnv 5103  Predcpred 5667  infcinf 8332  wsuccwsuc 31726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-xp 5110  df-cnv 5112  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-sup 8333  df-inf 8334  df-wsuc 31730
This theorem is referenced by:  wsuceq1  31735  wsuceq2  31736  wsuceq3  31737
  Copyright terms: Public domain W3C validator