Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wtgoldbnnsum4prm Structured version   Visualization version   GIF version

Theorem wtgoldbnnsum4prm 43966
Description: If the (weak) ternary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 4 primes, showing that Schnirelmann's constant would be less than or equal to 4. See corollary 1.1 in [Helfgott] p. 4. (Contributed by AV, 25-Jul-2020.)
Assertion
Ref Expression
wtgoldbnnsum4prm (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∀𝑛 ∈ (ℤ‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Distinct variable group:   𝑓,𝑘,𝑚,𝑑,𝑛

Proof of Theorem wtgoldbnnsum4prm
StepHypRef Expression
1 2z 12013 . . . . . . 7 2 ∈ ℤ
2 9nn 11734 . . . . . . . 8 9 ∈ ℕ
32nnzi 12005 . . . . . . 7 9 ∈ ℤ
4 2re 11710 . . . . . . . 8 2 ∈ ℝ
5 9re 11735 . . . . . . . 8 9 ∈ ℝ
6 2lt9 11841 . . . . . . . 8 2 < 9
74, 5, 6ltleii 10762 . . . . . . 7 2 ≤ 9
8 eluz2 12248 . . . . . . 7 (9 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 9 ∈ ℤ ∧ 2 ≤ 9))
91, 3, 7, 8mpbir3an 1337 . . . . . 6 9 ∈ (ℤ‘2)
10 fzouzsplit 13071 . . . . . . 7 (9 ∈ (ℤ‘2) → (ℤ‘2) = ((2..^9) ∪ (ℤ‘9)))
1110eleq2d 2898 . . . . . 6 (9 ∈ (ℤ‘2) → (𝑛 ∈ (ℤ‘2) ↔ 𝑛 ∈ ((2..^9) ∪ (ℤ‘9))))
129, 11ax-mp 5 . . . . 5 (𝑛 ∈ (ℤ‘2) ↔ 𝑛 ∈ ((2..^9) ∪ (ℤ‘9)))
13 elun 4124 . . . . 5 (𝑛 ∈ ((2..^9) ∪ (ℤ‘9)) ↔ (𝑛 ∈ (2..^9) ∨ 𝑛 ∈ (ℤ‘9)))
1412, 13bitri 277 . . . 4 (𝑛 ∈ (ℤ‘2) ↔ (𝑛 ∈ (2..^9) ∨ 𝑛 ∈ (ℤ‘9)))
15 elfzo2 13040 . . . . . . . 8 (𝑛 ∈ (2..^9) ↔ (𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9))
16 simp1 1132 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → 𝑛 ∈ (ℤ‘2))
17 df-9 11706 . . . . . . . . . . . 12 9 = (8 + 1)
1817breq2i 5073 . . . . . . . . . . 11 (𝑛 < 9 ↔ 𝑛 < (8 + 1))
19 eluz2nn 12283 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ‘2) → 𝑛 ∈ ℕ)
20 8nn 11731 . . . . . . . . . . . . . . 15 8 ∈ ℕ
2119, 20jctir 523 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘2) → (𝑛 ∈ ℕ ∧ 8 ∈ ℕ))
2221adantr 483 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 ∈ ℕ ∧ 8 ∈ ℕ))
23 nnleltp1 12036 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 8 ∈ ℕ) → (𝑛 ≤ 8 ↔ 𝑛 < (8 + 1)))
2422, 23syl 17 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 ≤ 8 ↔ 𝑛 < (8 + 1)))
2524biimprd 250 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 < (8 + 1) → 𝑛 ≤ 8))
2618, 25syl5bi 244 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 < 9 → 𝑛 ≤ 8))
27263impia 1113 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → 𝑛 ≤ 8)
2816, 27jca 514 . . . . . . . 8 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → (𝑛 ∈ (ℤ‘2) ∧ 𝑛 ≤ 8))
2915, 28sylbi 219 . . . . . . 7 (𝑛 ∈ (2..^9) → (𝑛 ∈ (ℤ‘2) ∧ 𝑛 ≤ 8))
30 nnsum4primesle9 43959 . . . . . . 7 ((𝑛 ∈ (ℤ‘2) ∧ 𝑛 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
3129, 30syl 17 . . . . . 6 (𝑛 ∈ (2..^9) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
3231a1d 25 . . . . 5 (𝑛 ∈ (2..^9) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
33 4nn 11719 . . . . . . . . 9 4 ∈ ℕ
3433a1i 11 . . . . . . . 8 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → 4 ∈ ℕ)
35 oveq2 7163 . . . . . . . . . . 11 (𝑑 = 4 → (1...𝑑) = (1...4))
3635oveq2d 7171 . . . . . . . . . 10 (𝑑 = 4 → (ℙ ↑m (1...𝑑)) = (ℙ ↑m (1...4)))
37 breq1 5068 . . . . . . . . . . 11 (𝑑 = 4 → (𝑑 ≤ 4 ↔ 4 ≤ 4))
3835sumeq1d 15057 . . . . . . . . . . . 12 (𝑑 = 4 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ (1...4)(𝑓𝑘))
3938eqeq2d 2832 . . . . . . . . . . 11 (𝑑 = 4 → (𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
4037, 39anbi12d 632 . . . . . . . . . 10 (𝑑 = 4 → ((𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (4 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘))))
4136, 40rexeqbidv 3402 . . . . . . . . 9 (𝑑 = 4 → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m (1...4))(4 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘))))
4241adantl 484 . . . . . . . 8 ((((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) ∧ 𝑑 = 4) → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m (1...4))(4 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘))))
43 4re 11720 . . . . . . . . . . 11 4 ∈ ℝ
4443leidi 11173 . . . . . . . . . 10 4 ≤ 4
4544a1i 11 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → 4 ≤ 4)
46 nnsum4primeseven 43964 . . . . . . . . . 10 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
4746impcom 410 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘))
48 r19.42v 3350 . . . . . . . . 9 (∃𝑓 ∈ (ℙ ↑m (1...4))(4 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘)) ↔ (4 ≤ 4 ∧ ∃𝑓 ∈ (ℙ ↑m (1...4))𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
4945, 47, 48sylanbrc 585 . . . . . . . 8 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ ↑m (1...4))(4 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
5034, 42, 49rspcedvd 3625 . . . . . . 7 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
5150ex 415 . . . . . 6 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
52 3nn 11715 . . . . . . . . 9 3 ∈ ℕ
5352a1i 11 . . . . . . . 8 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → 3 ∈ ℕ)
54 oveq2 7163 . . . . . . . . . . 11 (𝑑 = 3 → (1...𝑑) = (1...3))
5554oveq2d 7171 . . . . . . . . . 10 (𝑑 = 3 → (ℙ ↑m (1...𝑑)) = (ℙ ↑m (1...3)))
56 breq1 5068 . . . . . . . . . . 11 (𝑑 = 3 → (𝑑 ≤ 4 ↔ 3 ≤ 4))
5754sumeq1d 15057 . . . . . . . . . . . 12 (𝑑 = 3 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ (1...3)(𝑓𝑘))
5857eqeq2d 2832 . . . . . . . . . . 11 (𝑑 = 3 → (𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
5956, 58anbi12d 632 . . . . . . . . . 10 (𝑑 = 3 → ((𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (3 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))))
6055, 59rexeqbidv 3402 . . . . . . . . 9 (𝑑 = 3 → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m (1...3))(3 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))))
6160adantl 484 . . . . . . . 8 ((((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) ∧ 𝑑 = 3) → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m (1...3))(3 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))))
62 3re 11716 . . . . . . . . . . 11 3 ∈ ℝ
63 3lt4 11810 . . . . . . . . . . 11 3 < 4
6462, 43, 63ltleii 10762 . . . . . . . . . 10 3 ≤ 4
6564a1i 11 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → 3 ≤ 4)
66 6nn 11725 . . . . . . . . . . . . 13 6 ∈ ℕ
6766nnzi 12005 . . . . . . . . . . . 12 6 ∈ ℤ
68 6re 11726 . . . . . . . . . . . . 13 6 ∈ ℝ
69 6lt9 11837 . . . . . . . . . . . . 13 6 < 9
7068, 5, 69ltleii 10762 . . . . . . . . . . . 12 6 ≤ 9
71 eluzuzle 12251 . . . . . . . . . . . 12 ((6 ∈ ℤ ∧ 6 ≤ 9) → (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ (ℤ‘6)))
7267, 70, 71mp2an 690 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ (ℤ‘6))
7372anim1i 616 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) → (𝑛 ∈ (ℤ‘6) ∧ 𝑛 ∈ Odd ))
74 nnsum4primesodd 43960 . . . . . . . . . 10 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ((𝑛 ∈ (ℤ‘6) ∧ 𝑛 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
7573, 74mpan9 509 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))
76 r19.42v 3350 . . . . . . . . 9 (∃𝑓 ∈ (ℙ ↑m (1...3))(3 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)) ↔ (3 ≤ 4 ∧ ∃𝑓 ∈ (ℙ ↑m (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
7765, 75, 76sylanbrc 585 . . . . . . . 8 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ ↑m (1...3))(3 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
7853, 61, 77rspcedvd 3625 . . . . . . 7 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
7978ex 415 . . . . . 6 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
80 eluzelz 12252 . . . . . . 7 (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ ℤ)
81 zeoALTV 43834 . . . . . . 7 (𝑛 ∈ ℤ → (𝑛 ∈ Even ∨ 𝑛 ∈ Odd ))
8280, 81syl 17 . . . . . 6 (𝑛 ∈ (ℤ‘9) → (𝑛 ∈ Even ∨ 𝑛 ∈ Odd ))
8351, 79, 82mpjaodan 955 . . . . 5 (𝑛 ∈ (ℤ‘9) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
8432, 83jaoi 853 . . . 4 ((𝑛 ∈ (2..^9) ∨ 𝑛 ∈ (ℤ‘9)) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
8514, 84sylbi 219 . . 3 (𝑛 ∈ (ℤ‘2) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
8685impcom 410 . 2 ((∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) ∧ 𝑛 ∈ (ℤ‘2)) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
8786ralrimiva 3182 1 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∀𝑛 ∈ (ℤ‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139  cun 3933   class class class wbr 5065  cfv 6354  (class class class)co 7155  m cmap 8405  1c1 10537   + caddc 10539   < clt 10674  cle 10675  cn 11637  2c2 11691  3c3 11692  4c4 11693  5c5 11694  6c6 11695  8c8 11697  9c9 11698  cz 11980  cuz 12242  ...cfz 12891  ..^cfzo 13032  Σcsu 15041  cprime 16014   Even ceven 43788   Odd codd 43789   GoldbachOddW cgbow 43910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-rp 12389  df-fz 12892  df-fzo 13033  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-sum 15042  df-dvds 15607  df-prm 16015  df-even 43790  df-odd 43791  df-gbe 43912  df-gbow 43913
This theorem is referenced by:  stgoldbnnsum4prm  43967
  Copyright terms: Public domain W3C validator