Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunnat Structured version   Visualization version   GIF version

Theorem wunnat 16663
 Description: A weak universe is closed under the natural transformation operation. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
wunnat.1 (𝜑𝑈 ∈ WUni)
wunnat.2 (𝜑𝐶𝑈)
wunnat.3 (𝜑𝐷𝑈)
Assertion
Ref Expression
wunnat (𝜑 → (𝐶 Nat 𝐷) ∈ 𝑈)

Proof of Theorem wunnat
Dummy variables 𝑓 𝑎 𝑔 𝑟 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wunnat.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunnat.2 . . . 4 (𝜑𝐶𝑈)
3 wunnat.3 . . . 4 (𝜑𝐷𝑈)
41, 2, 3wunfunc 16606 . . 3 (𝜑 → (𝐶 Func 𝐷) ∈ 𝑈)
51, 4, 4wunxp 9584 . 2 (𝜑 → ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) ∈ 𝑈)
6 df-hom 16013 . . . . . . 7 Hom = Slot 14
76, 1, 3wunstr 15928 . . . . . 6 (𝜑 → (Hom ‘𝐷) ∈ 𝑈)
81, 7wunrn 9589 . . . . 5 (𝜑 → ran (Hom ‘𝐷) ∈ 𝑈)
91, 8wununi 9566 . . . 4 (𝜑 ran (Hom ‘𝐷) ∈ 𝑈)
10 df-base 15910 . . . . 5 Base = Slot 1
1110, 1, 2wunstr 15928 . . . 4 (𝜑 → (Base‘𝐶) ∈ 𝑈)
121, 9, 11wunmap 9586 . . 3 (𝜑 → ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶)) ∈ 𝑈)
131, 12wunpw 9567 . 2 (𝜑 → 𝒫 ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶)) ∈ 𝑈)
14 fvex 6239 . . . . . 6 (1st𝑓) ∈ V
15 fvex 6239 . . . . . . . . 9 (1st𝑔) ∈ V
16 ssrab2 3720 . . . . . . . . . . . . 13 {𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ⊆ X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥))
17 ovssunirn 6721 . . . . . . . . . . . . . . . 16 ((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ ran (Hom ‘𝐷)
1817rgenw 2953 . . . . . . . . . . . . . . 15 𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ ran (Hom ‘𝐷)
19 ss2ixp 7963 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ ran (Hom ‘𝐷) → X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ X𝑥 ∈ (Base‘𝐶) ran (Hom ‘𝐷))
2018, 19ax-mp 5 . . . . . . . . . . . . . 14 X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ X𝑥 ∈ (Base‘𝐶) ran (Hom ‘𝐷)
21 fvex 6239 . . . . . . . . . . . . . . 15 (Base‘𝐶) ∈ V
22 fvex 6239 . . . . . . . . . . . . . . . . 17 (Hom ‘𝐷) ∈ V
2322rnex 7142 . . . . . . . . . . . . . . . 16 ran (Hom ‘𝐷) ∈ V
2423uniex 6995 . . . . . . . . . . . . . . 15 ran (Hom ‘𝐷) ∈ V
2521, 24ixpconst 7960 . . . . . . . . . . . . . 14 X𝑥 ∈ (Base‘𝐶) ran (Hom ‘𝐷) = ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶))
2620, 25sseqtri 3670 . . . . . . . . . . . . 13 X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶))
2716, 26sstri 3645 . . . . . . . . . . . 12 {𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ⊆ ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶))
28 ovex 6718 . . . . . . . . . . . . 13 ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶)) ∈ V
2928elpw2 4858 . . . . . . . . . . . 12 ({𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶)) ↔ {𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ⊆ ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶)))
3027, 29mpbir 221 . . . . . . . . . . 11 {𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶))
3130sbcth 3483 . . . . . . . . . 10 ((1st𝑔) ∈ V → [(1st𝑔) / 𝑠]{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶)))
32 sbcel1g 4020 . . . . . . . . . 10 ((1st𝑔) ∈ V → ([(1st𝑔) / 𝑠]{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶)) ↔ (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶))))
3331, 32mpbid 222 . . . . . . . . 9 ((1st𝑔) ∈ V → (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶)))
3415, 33ax-mp 5 . . . . . . . 8 (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶))
3534sbcth 3483 . . . . . . 7 ((1st𝑓) ∈ V → [(1st𝑓) / 𝑟](1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶)))
36 sbcel1g 4020 . . . . . . 7 ((1st𝑓) ∈ V → ([(1st𝑓) / 𝑟](1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶)) ↔ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶))))
3735, 36mpbid 222 . . . . . 6 ((1st𝑓) ∈ V → (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶)))
3814, 37ax-mp 5 . . . . 5 (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶))
3938rgen2w 2954 . . . 4 𝑓 ∈ (𝐶 Func 𝐷)∀𝑔 ∈ (𝐶 Func 𝐷)(1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶))
40 eqid 2651 . . . . . 6 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
41 eqid 2651 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
42 eqid 2651 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
43 eqid 2651 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
44 eqid 2651 . . . . . 6 (comp‘𝐷) = (comp‘𝐷)
4540, 41, 42, 43, 44natfval 16653 . . . . 5 (𝐶 Nat 𝐷) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
4645fmpt2 7282 . . . 4 (∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑔 ∈ (𝐶 Func 𝐷)(1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶)) ↔ (𝐶 Nat 𝐷):((𝐶 Func 𝐷) × (𝐶 Func 𝐷))⟶𝒫 ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶)))
4739, 46mpbi 220 . . 3 (𝐶 Nat 𝐷):((𝐶 Func 𝐷) × (𝐶 Func 𝐷))⟶𝒫 ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶))
4847a1i 11 . 2 (𝜑 → (𝐶 Nat 𝐷):((𝐶 Func 𝐷) × (𝐶 Func 𝐷))⟶𝒫 ( ran (Hom ‘𝐷) ↑𝑚 (Base‘𝐶)))
491, 5, 13, 48wunf 9587 1 (𝜑 → (𝐶 Nat 𝐷) ∈ 𝑈)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1523   ∈ wcel 2030  ∀wral 2941  {crab 2945  Vcvv 3231  [wsbc 3468  ⦋csb 3566   ⊆ wss 3607  𝒫 cpw 4191  ⟨cop 4216  ∪ cuni 4468   × cxp 5141  ran crn 5144  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  1st c1st 7208  2nd c2nd 7209   ↑𝑚 cmap 7899  Xcixp 7950  WUnicwun 9560  1c1 9975  4c4 11110  ;cdc 11531  Basecbs 15904  Hom chom 15999  compcco 16000   Func cfunc 16561   Nat cnat 16648 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-map 7901  df-pm 7902  df-ixp 7951  df-wun 9562  df-slot 15908  df-base 15910  df-hom 16013  df-func 16565  df-nat 16650 This theorem is referenced by:  catcfuccl  16806
 Copyright terms: Public domain W3C validator