Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunun Structured version   Visualization version   GIF version

Theorem wunun 9492
 Description: A weak universe is closed under binary union. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
wunpr.3 (𝜑𝐵𝑈)
Assertion
Ref Expression
wunun (𝜑 → (𝐴𝐵) ∈ 𝑈)

Proof of Theorem wunun
StepHypRef Expression
1 wununi.2 . . 3 (𝜑𝐴𝑈)
2 wunpr.3 . . 3 (𝜑𝐵𝑈)
3 uniprg 4423 . . 3 ((𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} = (𝐴𝐵))
41, 2, 3syl2anc 692 . 2 (𝜑 {𝐴, 𝐵} = (𝐴𝐵))
5 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
65, 1, 2wunpr 9491 . . 3 (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
75, 6wununi 9488 . 2 (𝜑 {𝐴, 𝐵} ∈ 𝑈)
84, 7eqeltrrd 2699 1 (𝜑 → (𝐴𝐵) ∈ 𝑈)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1480   ∈ wcel 1987   ∪ cun 3558  {cpr 4157  ∪ cuni 4409  WUnicwun 9482 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-v 3192  df-un 3565  df-in 3567  df-ss 3574  df-sn 4156  df-pr 4158  df-uni 4410  df-tr 4723  df-wun 9484 This theorem is referenced by:  wuntp  9493  wunsuc  9499  wunfi  9503  wunxp  9506  wuntpos  9516  wunsets  15840  catcoppccl  16698
 Copyright terms: Public domain W3C validator