MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlknp Structured version   Visualization version   GIF version

Theorem wwlknp 26597
Description: Properties of a set being a walk of length n (represented by a word). (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 9-Apr-2021.)
Hypotheses
Ref Expression
wwlkbp.v 𝑉 = (Vtx‘𝐺)
wwlknp.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlknp (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
Distinct variable groups:   𝑖,𝐺   𝑖,𝑊   𝑖,𝑁
Allowed substitution hints:   𝐸(𝑖)   𝑉(𝑖)

Proof of Theorem wwlknp
StepHypRef Expression
1 wwlkbp.v . . 3 𝑉 = (Vtx‘𝐺)
21wwlknbp 26596 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉))
3 iswwlksn 26593 . . . 4 (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (#‘𝑊) = (𝑁 + 1))))
4 wwlknp.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
51, 4iswwlks 26591 . . . . . . 7 (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
6 simpl2 1063 . . . . . . . . 9 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((#‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0)) → 𝑊 ∈ Word 𝑉)
7 simprl 793 . . . . . . . . 9 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((#‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0)) → (#‘𝑊) = (𝑁 + 1))
8 oveq1 6612 . . . . . . . . . . . . . . 15 ((#‘𝑊) = (𝑁 + 1) → ((#‘𝑊) − 1) = ((𝑁 + 1) − 1))
9 nn0cn 11247 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
10 pncan1 10399 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
119, 10syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
128, 11sylan9eq 2680 . . . . . . . . . . . . . 14 (((#‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → ((#‘𝑊) − 1) = 𝑁)
1312oveq2d 6621 . . . . . . . . . . . . 13 (((#‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → (0..^((#‘𝑊) − 1)) = (0..^𝑁))
1413raleqdv 3138 . . . . . . . . . . . 12 (((#‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
1514biimpcd 239 . . . . . . . . . . 11 (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → (((#‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
16153ad2ant3 1082 . . . . . . . . . 10 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (((#‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
1716imp 445 . . . . . . . . 9 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((#‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0)) → ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)
186, 7, 173jca 1240 . . . . . . . 8 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((#‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
1918ex 450 . . . . . . 7 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (((#‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
205, 19sylbi 207 . . . . . 6 (𝑊 ∈ (WWalks‘𝐺) → (((#‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
2120expdimp 453 . . . . 5 ((𝑊 ∈ (WWalks‘𝐺) ∧ (#‘𝑊) = (𝑁 + 1)) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
2221com12 32 . . . 4 (𝑁 ∈ ℕ0 → ((𝑊 ∈ (WWalks‘𝐺) ∧ (#‘𝑊) = (𝑁 + 1)) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
233, 22sylbid 230 . . 3 (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
24233ad2ant2 1081 . 2 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
252, 24mpcom 38 1 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1992  wne 2796  wral 2912  Vcvv 3191  c0 3896  {cpr 4155  cfv 5850  (class class class)co 6605  cc 9879  0cc0 9881  1c1 9882   + caddc 9884  cmin 10211  0cn0 11237  ..^cfzo 12403  #chash 13054  Word cword 13225  Vtxcvtx 25769  Edgcedg 25834  WWalkscwwlks 26580   WWalksN cwwlksn 26581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-er 7688  df-map 7805  df-pm 7806  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266  df-fzo 12404  df-hash 13055  df-word 13233  df-wwlks 26585  df-wwlksn 26586
This theorem is referenced by:  wwlknbp2  26615  wwlksnext  26651  wwlksnextbi  26652  wwlksnredwwlkn  26653  wwlksnredwwlkn0  26654  wwlksnextwrd  26655  wwlksnextsur  26658  wwlksnextproplem2  26668  wwlksnextproplem3  26669  rusgrnumwwlks  26730  clwwlksf1  26777  clwwlksvbij  26782  wwlksext2clwwlk  26784  numclwwlk2lem1  27084
  Copyright terms: Public domain W3C validator