MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlknred Structured version   Visualization version   GIF version

Theorem wwlknred 26017
Description: Reduction of a walk (as word) by removing the trailing edge/vertex. (Contributed by Alexander van der Vekens, 4-Aug-2018.)
Assertion
Ref Expression
wwlknred (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘(𝑁 + 1)) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ ((𝑉 WWalksN 𝐸)‘𝑁)))

Proof of Theorem wwlknred
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wwlknprop 25980 . . 3 (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘(𝑁 + 1)) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ ((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word 𝑉)))
2 simpl 471 . . . . . . 7 (((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word 𝑉) → (𝑁 + 1) ∈ ℕ0)
32anim2i 590 . . . . . 6 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ ((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word 𝑉)) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑁 + 1) ∈ ℕ0))
4 df-3an 1032 . . . . . 6 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ (𝑁 + 1) ∈ ℕ0) ↔ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑁 + 1) ∈ ℕ0))
53, 4sylibr 222 . . . . 5 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ ((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word 𝑉)) → (𝑉 ∈ V ∧ 𝐸 ∈ V ∧ (𝑁 + 1) ∈ ℕ0))
6 iswwlkn 25978 . . . . 5 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ (𝑁 + 1) ∈ ℕ0) → (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘(𝑁 + 1)) ↔ (𝑊 ∈ (𝑉 WWalks 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))))
75, 6syl 17 . . . 4 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ ((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word 𝑉)) → (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘(𝑁 + 1)) ↔ (𝑊 ∈ (𝑉 WWalks 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))))
8 iswwlk 25977 . . . . . . 7 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑊 ∈ (𝑉 WWalks 𝐸) ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸)))
98adantr 479 . . . . . 6 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ ((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word 𝑉)) → (𝑊 ∈ (𝑉 WWalks 𝐸) ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸)))
10 simp1 1053 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ Word 𝑉)
11 nn0p1nn 11179 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
12113ad2ant3 1076 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ)
13 peano2nn0 11180 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1413nn0red 11199 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
1514lep1d 10804 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
16153ad2ant3 1076 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
17 breq2 4581 . . . . . . . . . . . . . . . . . . . . . . 23 ((#‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ≤ (#‘𝑊) ↔ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
18173ad2ant2 1075 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 1) ≤ (#‘𝑊) ↔ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
1916, 18mpbird 245 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (#‘𝑊))
20 swrdn0 13228 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ ℕ ∧ (𝑁 + 1) ≤ (#‘𝑊)) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅)
2110, 12, 19, 20syl3anc 1317 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅)
22213exp 1255 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ Word 𝑉 → ((#‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅)))
23223ad2ant2 1075 . . . . . . . . . . . . . . . . . 18 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) → ((#‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅)))
2423imp 443 . . . . . . . . . . . . . . . . 17 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅))
2524com12 32 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅))
2625adantl 480 . . . . . . . . . . . . . . 15 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑁 ∈ ℕ0) → (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅))
2726imp 443 . . . . . . . . . . . . . 14 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑁 ∈ ℕ0) ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅)
28 swrdcl 13217 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word 𝑉 → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ Word 𝑉)
29283ad2ant2 1075 . . . . . . . . . . . . . . . 16 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ Word 𝑉)
3029adantr 479 . . . . . . . . . . . . . . 15 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ Word 𝑉)
3130adantl 480 . . . . . . . . . . . . . 14 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑁 ∈ ℕ0) ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ Word 𝑉)
32 oveq1 6534 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((#‘𝑊) = ((𝑁 + 1) + 1) → ((#‘𝑊) − 1) = (((𝑁 + 1) + 1) − 1))
3313nn0cnd 11200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
34 1cnd 9912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
3533, 34pncand 10244 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
3632, 35sylan9eq 2663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ((#‘𝑊) − 1) = (𝑁 + 1))
3736oveq2d 6543 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (0..^((#‘𝑊) − 1)) = (0..^(𝑁 + 1)))
3837raleqdv 3120 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸))
3938adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸))
40 nn0z 11233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
41 nn0z 11233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
4213, 41syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
43 nn0re 11148 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
4443lep1d 10804 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑁 ∈ ℕ0𝑁 ≤ (𝑁 + 1))
4540, 42, 443jca 1234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑁 ≤ (𝑁 + 1)))
4645ad2antll 760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑁 ≤ (𝑁 + 1)))
47 eluz2 11525 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑁 + 1) ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑁 ≤ (𝑁 + 1)))
4846, 47sylibr 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (ℤ𝑁))
49 fzoss2 12320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 + 1) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
5048, 49syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
51 ssralv 3628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((0..^𝑁) ⊆ (0..^(𝑁 + 1)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸))
5250, 51syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸))
53 simpl 471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → 𝑊 ∈ Word 𝑉)
5453adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑊 ∈ Word 𝑉)
55 nn0fz0 12261 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑁 + 1) ∈ ℕ0 ↔ (𝑁 + 1) ∈ (0...(𝑁 + 1)))
5613, 55sylib 206 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (0...(𝑁 + 1)))
5756ad2antll 760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (0...(𝑁 + 1)))
58 fzelp1 12218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑁 + 1) ∈ (0...(𝑁 + 1)) → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
60 oveq2 6535 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((#‘𝑊) = ((𝑁 + 1) + 1) → (0...(#‘𝑊)) = (0...((𝑁 + 1) + 1)))
6160eleq2d 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((#‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ∈ (0...(#‘𝑊)) ↔ (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1))))
6261adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 1) ∈ (0...(#‘𝑊)) ↔ (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1))))
6362adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → ((𝑁 + 1) ∈ (0...(#‘𝑊)) ↔ (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1))))
6459, 63mpbird 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (0...(#‘𝑊)))
6564adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑁 + 1) ∈ (0...(#‘𝑊)))
66 fzossfzop1 12367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑁 ∈ ℕ0 → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
6766sseld 3566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑁 ∈ ℕ0 → (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^(𝑁 + 1))))
6867ad2antll 760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^(𝑁 + 1))))
6968imp 443 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^(𝑁 + 1)))
70 swrd0fv 13237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (0...(#‘𝑊)) ∧ 𝑖 ∈ (0..^(𝑁 + 1))) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖) = (𝑊𝑖))
7154, 65, 69, 70syl3anc 1317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖) = (𝑊𝑖))
7271eqcomd 2615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑊𝑖) = ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖))
73 fzofzp1 12386 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (0...𝑁))
7473adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0...𝑁))
75 fzval3 12359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1)))
7675eqcomd 2615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑁 ∈ ℤ → (0..^(𝑁 + 1)) = (0...𝑁))
7740, 76syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑁 ∈ ℕ0 → (0..^(𝑁 + 1)) = (0...𝑁))
7877eleq2d 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑁 ∈ ℕ0 → ((𝑖 + 1) ∈ (0..^(𝑁 + 1)) ↔ (𝑖 + 1) ∈ (0...𝑁)))
7978ad2antll 760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → ((𝑖 + 1) ∈ (0..^(𝑁 + 1)) ↔ (𝑖 + 1) ∈ (0...𝑁)))
8079adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑖 + 1) ∈ (0..^(𝑁 + 1)) ↔ (𝑖 + 1) ∈ (0...𝑁)))
8174, 80mpbird 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0..^(𝑁 + 1)))
82 swrd0fv 13237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (0...(#‘𝑊)) ∧ (𝑖 + 1) ∈ (0..^(𝑁 + 1))) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
8354, 65, 81, 82syl3anc 1317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
8483eqcomd 2615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑊‘(𝑖 + 1)) = ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1)))
8572, 84preq12d 4219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))})
8685eleq1d 2671 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸))
8786biimpd 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸 → {((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸))
8887ralimdva 2944 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^𝑁){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸))
8952, 88syld 45 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^𝑁){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸))
9039, 89sylbid 228 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^𝑁){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸))
9190imp 443 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) → ∀𝑖 ∈ (0..^𝑁){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸)
92 nn0cn 11149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
9392, 34pncand 10244 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
9493oveq2d 6543 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0 → (0..^((𝑁 + 1) − 1)) = (0..^𝑁))
9594ad2antll 760 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (0..^((𝑁 + 1) − 1)) = (0..^𝑁))
9695adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) → (0..^((𝑁 + 1) − 1)) = (0..^𝑁))
9796raleqdv 3120 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) → (∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ∀𝑖 ∈ (0..^𝑁){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸))
9891, 97mpbird 245 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) → ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸)
9913ad2antll 760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ ℕ0)
100 simpl 471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (#‘𝑊) = ((𝑁 + 1) + 1))
101100adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (#‘𝑊) = ((𝑁 + 1) + 1))
102 swrd0len0 13234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ ℕ0 ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑁 + 1))
10353, 99, 101, 102syl3anc 1317 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑁 + 1))
104103oveq1d 6542 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → ((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1) = ((𝑁 + 1) − 1))
105104oveq2d 6543 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)) = (0..^((𝑁 + 1) − 1)))
106105raleqdv 3120 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸))
107106adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) → (∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸))
10898, 107mpbird 245 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) → ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸)
109108exp31 627 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 ∈ Word 𝑉 → (((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸)))
110109com23 83 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 ∈ Word 𝑉 → (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸 → (((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸)))
111110imp 443 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) → (((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸))
1121113adant1 1071 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) → (((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸))
113112expd 450 . . . . . . . . . . . . . . . . . 18 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) → ((#‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸)))
114113imp 443 . . . . . . . . . . . . . . . . 17 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸))
115114com12 32 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸))
116115adantl 480 . . . . . . . . . . . . . . 15 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑁 ∈ ℕ0) → (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸))
117116imp 443 . . . . . . . . . . . . . 14 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑁 ∈ ℕ0) ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))) → ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸)
11827, 31, 1173jca 1234 . . . . . . . . . . . . 13 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑁 ∈ ℕ0) ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅ ∧ (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸))
119 iswwlk 25977 . . . . . . . . . . . . . . 15 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑉 WWalks 𝐸) ↔ ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅ ∧ (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸)))
120119adantr 479 . . . . . . . . . . . . . 14 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑁 ∈ ℕ0) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑉 WWalks 𝐸) ↔ ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅ ∧ (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸)))
121120adantr 479 . . . . . . . . . . . . 13 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑁 ∈ ℕ0) ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑉 WWalks 𝐸) ↔ ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅ ∧ (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ ran 𝐸)))
122118, 121mpbird 245 . . . . . . . . . . . 12 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑁 ∈ ℕ0) ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑉 WWalks 𝐸))
123 peano2nn0 11180 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
12413, 123syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
125 elfz2nn0 12255 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)) ↔ ((𝑁 + 1) ∈ ℕ0 ∧ ((𝑁 + 1) + 1) ∈ ℕ0 ∧ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
12613, 124, 15, 125syl3anbrc 1238 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
127126adantl 480 . . . . . . . . . . . . . . . . . . . . 21 (((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
128127, 62mpbird 245 . . . . . . . . . . . . . . . . . . . 20 (((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...(#‘𝑊)))
129128anim2i 590 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑊 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (0...(#‘𝑊))))
130129exp32 628 . . . . . . . . . . . . . . . . . 18 (𝑊 ∈ Word 𝑉 → ((#‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (0...(#‘𝑊))))))
1311303ad2ant2 1075 . . . . . . . . . . . . . . . . 17 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) → ((#‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (0...(#‘𝑊))))))
132131imp 443 . . . . . . . . . . . . . . . 16 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (0...(#‘𝑊)))))
133132com12 32 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (0...(#‘𝑊)))))
134133adantl 480 . . . . . . . . . . . . . 14 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑁 ∈ ℕ0) → (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (0...(#‘𝑊)))))
135134imp 443 . . . . . . . . . . . . 13 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑁 ∈ ℕ0) ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (0...(#‘𝑊))))
136 swrd0len 13220 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (0...(#‘𝑊))) → (#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑁 + 1))
137135, 136syl 17 . . . . . . . . . . . 12 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑁 ∈ ℕ0) ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))) → (#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑁 + 1))
138 iswwlkn 25978 . . . . . . . . . . . . . 14 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ↔ ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑉 WWalks 𝐸) ∧ (#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑁 + 1))))
1391383expa 1256 . . . . . . . . . . . . 13 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑁 ∈ ℕ0) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ↔ ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑉 WWalks 𝐸) ∧ (#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑁 + 1))))
140139adantr 479 . . . . . . . . . . . 12 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑁 ∈ ℕ0) ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ↔ ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑉 WWalks 𝐸) ∧ (#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑁 + 1))))
141122, 137, 140mpbir2and 958 . . . . . . . . . . 11 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑁 ∈ ℕ0) ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ ((𝑉 WWalksN 𝐸)‘𝑁))
142141ex 448 . . . . . . . . . 10 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑁 ∈ ℕ0) → (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ ((𝑉 WWalksN 𝐸)‘𝑁)))
143142expcom 449 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ ((𝑉 WWalksN 𝐸)‘𝑁))))
144143com3l 86 . . . . . . . 8 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ ((𝑉 WWalksN 𝐸)‘𝑁))))
145144adantr 479 . . . . . . 7 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ ((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word 𝑉)) → (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ ((𝑉 WWalksN 𝐸)‘𝑁))))
146145expd 450 . . . . . 6 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ ((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word 𝑉)) → ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) → ((#‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ ((𝑉 WWalksN 𝐸)‘𝑁)))))
1479, 146sylbid 228 . . . . 5 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ ((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word 𝑉)) → (𝑊 ∈ (𝑉 WWalks 𝐸) → ((#‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ ((𝑉 WWalksN 𝐸)‘𝑁)))))
148147impd 445 . . . 4 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ ((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word 𝑉)) → ((𝑊 ∈ (𝑉 WWalks 𝐸) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ ((𝑉 WWalksN 𝐸)‘𝑁))))
1497, 148sylbid 228 . . 3 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ ((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word 𝑉)) → (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘(𝑁 + 1)) → (𝑁 ∈ ℕ0 → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ ((𝑉 WWalksN 𝐸)‘𝑁))))
1501, 149mpcom 37 . 2 (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘(𝑁 + 1)) → (𝑁 ∈ ℕ0 → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ ((𝑉 WWalksN 𝐸)‘𝑁)))
151150com12 32 1 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘(𝑁 + 1)) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ ((𝑉 WWalksN 𝐸)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wral 2895  Vcvv 3172  wss 3539  c0 3873  {cpr 4126  cop 4130   class class class wbr 4577  ran crn 5029  cfv 5790  (class class class)co 6527  0cc0 9792  1c1 9793   + caddc 9795  cle 9931  cmin 10117  cn 10867  0cn0 11139  cz 11210  cuz 11519  ...cfz 12152  ..^cfzo 12289  #chash 12934  Word cword 13092   substr csubstr 13096   WWalks cwwlk 25971   WWalksN cwwlkn 25972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-n0 11140  df-z 11211  df-uz 11520  df-fz 12153  df-fzo 12290  df-hash 12935  df-word 13100  df-substr 13104  df-wwlk 25973  df-wwlkn 25974
This theorem is referenced by:  wwlknextbi  26019  wwlknredwwlkn  26020
  Copyright terms: Public domain W3C validator