![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wwlks2onsym | Structured version Visualization version GIF version |
Description: There is a walk of length 2 from one vertex to another vertex iff there is a walk of length 2 from the other vertex to the first vertex. (Contributed by AV, 7-Jan-2022.) |
Ref | Expression |
---|---|
elwwlks2on.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
wwlks2onsym | ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 〈“𝐶𝐵𝐴”〉 ∈ (𝐶(2 WWalksNOn 𝐺)𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elwwlks2on.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eqid 2724 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | umgrwwlks2on 26999 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺)))) |
4 | 3anrev 1091 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ↔ (𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉)) | |
5 | 1, 2 | umgrwwlks2on 26999 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉)) → (〈“𝐶𝐵𝐴”〉 ∈ (𝐶(2 WWalksNOn 𝐺)𝐴) ↔ ({𝐶, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐴} ∈ (Edg‘𝐺)))) |
6 | 4, 5 | sylan2b 493 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐶𝐵𝐴”〉 ∈ (𝐶(2 WWalksNOn 𝐺)𝐴) ↔ ({𝐶, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐴} ∈ (Edg‘𝐺)))) |
7 | prcom 4374 | . . . . 5 ⊢ {𝐶, 𝐵} = {𝐵, 𝐶} | |
8 | 7 | eleq1i 2794 | . . . 4 ⊢ ({𝐶, 𝐵} ∈ (Edg‘𝐺) ↔ {𝐵, 𝐶} ∈ (Edg‘𝐺)) |
9 | prcom 4374 | . . . . 5 ⊢ {𝐵, 𝐴} = {𝐴, 𝐵} | |
10 | 9 | eleq1i 2794 | . . . 4 ⊢ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ↔ {𝐴, 𝐵} ∈ (Edg‘𝐺)) |
11 | 8, 10 | anbi12ci 736 | . . 3 ⊢ (({𝐶, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐴} ∈ (Edg‘𝐺)) ↔ ({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺))) |
12 | 6, 11 | syl6rbb 277 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺)) ↔ 〈“𝐶𝐵𝐴”〉 ∈ (𝐶(2 WWalksNOn 𝐺)𝐴))) |
13 | 3, 12 | bitrd 268 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 〈“𝐶𝐵𝐴”〉 ∈ (𝐶(2 WWalksNOn 𝐺)𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1596 ∈ wcel 2103 {cpr 4287 ‘cfv 6001 (class class class)co 6765 2c2 11183 〈“cs3 13708 Vtxcvtx 25994 Edgcedg 26059 UMGraphcumgr 26096 WWalksNOn cwwlksnon 26851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-ac2 9398 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ifp 1051 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-se 5178 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-isom 6010 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-1st 7285 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-2o 7681 df-oadd 7684 df-er 7862 df-map 7976 df-pm 7977 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-card 8878 df-ac 9052 df-cda 9103 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-nn 11134 df-2 11192 df-3 11193 df-n0 11406 df-xnn0 11477 df-z 11491 df-uz 11801 df-fz 12441 df-fzo 12581 df-hash 13233 df-word 13406 df-concat 13408 df-s1 13409 df-s2 13714 df-s3 13715 df-edg 26060 df-uhgr 26073 df-upgr 26097 df-umgr 26098 df-wlks 26626 df-wwlks 26854 df-wwlksn 26855 df-wwlksnon 26856 |
This theorem is referenced by: frgr2wwlkeqm 27406 |
Copyright terms: Public domain | W3C validator |