MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnext Structured version   Visualization version   GIF version

Theorem wwlksnext 27663
Description: Extension of a walk (as word) by adding an edge/vertex. (Contributed by Alexander van der Vekens, 4-Aug-2018.) (Revised by AV, 16-Apr-2021.)
Hypotheses
Ref Expression
wwlksnext.v 𝑉 = (Vtx‘𝐺)
wwlksnext.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlksnext ((𝑇 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺))

Proof of Theorem wwlksnext
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wwlksnext.v . . . 4 𝑉 = (Vtx‘𝐺)
21wwlknbp 27612 . . 3 (𝑇 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑇 ∈ Word 𝑉))
3 wwlksnext.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
41, 3wwlknp 27613 . . . . . . . . . 10 (𝑇 ∈ (𝑁 WWalksN 𝐺) → (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸))
5 simp1 1131 . . . . . . . . . . . . . . 15 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) → 𝑇 ∈ Word 𝑉)
6 simprl 769 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → 𝑆𝑉)
7 cats1un 14075 . . . . . . . . . . . . . . 15 ((𝑇 ∈ Word 𝑉𝑆𝑉) → (𝑇 ++ ⟨“𝑆”⟩) = (𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}))
85, 6, 7syl2an 597 . . . . . . . . . . . . . 14 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (𝑇 ++ ⟨“𝑆”⟩) = (𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}))
9 opex 5347 . . . . . . . . . . . . . . . . . . 19 ⟨(♯‘𝑇), 𝑆⟩ ∈ V
109snnz 4703 . . . . . . . . . . . . . . . . . 18 {⟨(♯‘𝑇), 𝑆⟩} ≠ ∅
1110neii 3016 . . . . . . . . . . . . . . . . 17 ¬ {⟨(♯‘𝑇), 𝑆⟩} = ∅
1211intnan 489 . . . . . . . . . . . . . . . 16 ¬ (𝑇 = ∅ ∧ {⟨(♯‘𝑇), 𝑆⟩} = ∅)
13 df-ne 3015 . . . . . . . . . . . . . . . . 17 ((𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}) ≠ ∅ ↔ ¬ (𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}) = ∅)
14 un00 4392 . . . . . . . . . . . . . . . . 17 ((𝑇 = ∅ ∧ {⟨(♯‘𝑇), 𝑆⟩} = ∅) ↔ (𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}) = ∅)
1513, 14xchbinxr 337 . . . . . . . . . . . . . . . 16 ((𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}) ≠ ∅ ↔ ¬ (𝑇 = ∅ ∧ {⟨(♯‘𝑇), 𝑆⟩} = ∅))
1612, 15mpbir 233 . . . . . . . . . . . . . . 15 (𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}) ≠ ∅
1716a1i 11 . . . . . . . . . . . . . 14 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}) ≠ ∅)
188, 17eqnetrd 3081 . . . . . . . . . . . . 13 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (𝑇 ++ ⟨“𝑆”⟩) ≠ ∅)
19 s1cl 13948 . . . . . . . . . . . . . . 15 (𝑆𝑉 → ⟨“𝑆”⟩ ∈ Word 𝑉)
2019ad2antrl 726 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ⟨“𝑆”⟩ ∈ Word 𝑉)
21 ccatcl 13918 . . . . . . . . . . . . . 14 ((𝑇 ∈ Word 𝑉 ∧ ⟨“𝑆”⟩ ∈ Word 𝑉) → (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉)
225, 20, 21syl2an 597 . . . . . . . . . . . . 13 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉)
23 simplrl 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑇 ∈ Word 𝑉)
24 fzossfzop1 13107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ ℕ0 → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
2524ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
2625sselda 3965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^(𝑁 + 1)))
27 oveq2 7156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((♯‘𝑇) = (𝑁 + 1) → (0..^(♯‘𝑇)) = (0..^(𝑁 + 1)))
2827eleq2d 2896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((♯‘𝑇) = (𝑁 + 1) → (𝑖 ∈ (0..^(♯‘𝑇)) ↔ 𝑖 ∈ (0..^(𝑁 + 1))))
2928adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → (𝑖 ∈ (0..^(♯‘𝑇)) ↔ 𝑖 ∈ (0..^(𝑁 + 1))))
3029ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 ∈ (0..^(♯‘𝑇)) ↔ 𝑖 ∈ (0..^(𝑁 + 1))))
3126, 30mpbird 259 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^(♯‘𝑇)))
32 ccats1val1 13973 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑇 ∈ Word 𝑉𝑖 ∈ (0..^(♯‘𝑇))) → ((𝑇 ++ ⟨“𝑆”⟩)‘𝑖) = (𝑇𝑖))
3323, 31, 32syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑇 ++ ⟨“𝑆”⟩)‘𝑖) = (𝑇𝑖))
34 fzonn0p1p1 13108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (0..^(𝑁 + 1)))
3534adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0..^(𝑁 + 1)))
3627adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → (0..^(♯‘𝑇)) = (0..^(𝑁 + 1)))
3736ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (0..^(♯‘𝑇)) = (0..^(𝑁 + 1)))
3835, 37eleqtrrd 2914 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0..^(♯‘𝑇)))
39 ccats1val1 13973 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑇 ∈ Word 𝑉 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝑇))) → ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1)) = (𝑇‘(𝑖 + 1)))
4023, 38, 39syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1)) = (𝑇‘(𝑖 + 1)))
4133, 40preq12d 4669 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} = {(𝑇𝑖), (𝑇‘(𝑖 + 1))})
4241exp31 422 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ0𝑆𝑉) → ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} = {(𝑇𝑖), (𝑇‘(𝑖 + 1))})))
4342adantrr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} = {(𝑇𝑖), (𝑇‘(𝑖 + 1))})))
4443impcom 410 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (𝑖 ∈ (0..^𝑁) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} = {(𝑇𝑖), (𝑇‘(𝑖 + 1))}))
4544imp 409 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) ∧ 𝑖 ∈ (0..^𝑁)) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} = {(𝑇𝑖), (𝑇‘(𝑖 + 1))})
4645eleq1d 2895 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) ∧ 𝑖 ∈ (0..^𝑁)) → ({((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸))
4746ralbidva 3194 . . . . . . . . . . . . . . . . . . . 20 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (∀𝑖 ∈ (0..^𝑁){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸))
4847exbiri 809 . . . . . . . . . . . . . . . . . . 19 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸 → ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸)))
4948com23 86 . . . . . . . . . . . . . . . . . 18 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → (∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸 → ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸)))
50493impia 1112 . . . . . . . . . . . . . . . . 17 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) → ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸))
5150imp 409 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸)
52 oveq1 7155 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((♯‘𝑇) = (𝑁 + 1) → ((♯‘𝑇) − 1) = ((𝑁 + 1) − 1))
5352adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → ((♯‘𝑇) − 1) = ((𝑁 + 1) − 1))
54 nn0cn 11899 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
55 1cnd 10628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
5654, 55pncand 10990 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
5756adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑆𝑉𝑁 ∈ ℕ0) → ((𝑁 + 1) − 1) = 𝑁)
5853, 57sylan9eqr 2876 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → ((♯‘𝑇) − 1) = 𝑁)
5958fveq2d 6667 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (𝑇‘((♯‘𝑇) − 1)) = (𝑇𝑁))
60 lsw 13908 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑇 ∈ Word 𝑉 → (lastS‘𝑇) = (𝑇‘((♯‘𝑇) − 1)))
6160ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (lastS‘𝑇) = (𝑇‘((♯‘𝑇) − 1)))
62 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → 𝑇 ∈ Word 𝑉)
63 fzonn0p1 13106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ0𝑁 ∈ (0..^(𝑁 + 1)))
6463ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → 𝑁 ∈ (0..^(𝑁 + 1)))
6527eleq2d 2896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((♯‘𝑇) = (𝑁 + 1) → (𝑁 ∈ (0..^(♯‘𝑇)) ↔ 𝑁 ∈ (0..^(𝑁 + 1))))
6665ad2antll 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (𝑁 ∈ (0..^(♯‘𝑇)) ↔ 𝑁 ∈ (0..^(𝑁 + 1))))
6764, 66mpbird 259 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → 𝑁 ∈ (0..^(♯‘𝑇)))
68 ccats1val1 13973 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑇 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑇))) → ((𝑇 ++ ⟨“𝑆”⟩)‘𝑁) = (𝑇𝑁))
6962, 67, 68syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → ((𝑇 ++ ⟨“𝑆”⟩)‘𝑁) = (𝑇𝑁))
7059, 61, 693eqtr4d 2864 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (lastS‘𝑇) = ((𝑇 ++ ⟨“𝑆”⟩)‘𝑁))
71 simpll 765 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → 𝑆𝑉)
72 simprr 771 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (♯‘𝑇) = (𝑁 + 1))
7372eqcomd 2825 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (𝑁 + 1) = (♯‘𝑇))
74 ccats1val2 13975 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑇 ∈ Word 𝑉𝑆𝑉 ∧ (𝑁 + 1) = (♯‘𝑇)) → ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1)) = 𝑆)
7574eqcomd 2825 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑇 ∈ Word 𝑉𝑆𝑉 ∧ (𝑁 + 1) = (♯‘𝑇)) → 𝑆 = ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1)))
7662, 71, 73, 75syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → 𝑆 = ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1)))
7770, 76preq12d 4669 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → {(lastS‘𝑇), 𝑆} = {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))})
7877eleq1d 2895 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → ({(lastS‘𝑇), 𝑆} ∈ 𝐸 ↔ {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸))
7978biimpcd 251 . . . . . . . . . . . . . . . . . . . . . 22 ({(lastS‘𝑇), 𝑆} ∈ 𝐸 → (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸))
8079exp4c 435 . . . . . . . . . . . . . . . . . . . . 21 ({(lastS‘𝑇), 𝑆} ∈ 𝐸 → (𝑆𝑉 → (𝑁 ∈ ℕ0 → ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸))))
8180impcom 410 . . . . . . . . . . . . . . . . . . . 20 ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑁 ∈ ℕ0 → ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸)))
8281impcom 410 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸))
8382impcom 410 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸)
84833adantl3 1163 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸)
85 fveq2 6663 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑁 → ((𝑇 ++ ⟨“𝑆”⟩)‘𝑖) = ((𝑇 ++ ⟨“𝑆”⟩)‘𝑁))
86 fvoveq1 7171 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑁 → ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1)) = ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1)))
8785, 86preq12d 4669 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑁 → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} = {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))})
8887eleq1d 2895 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑁 → ({((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸))
8988ralsng 4605 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (∀𝑖 ∈ {𝑁} {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸))
9089ad2antrl 726 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (∀𝑖 ∈ {𝑁} {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸))
9184, 90mpbird 259 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ {𝑁} {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸)
92 ralunb 4165 . . . . . . . . . . . . . . . 16 (∀𝑖 ∈ ((0..^𝑁) ∪ {𝑁}){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ (∀𝑖 ∈ (0..^𝑁){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ ∀𝑖 ∈ {𝑁} {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸))
9351, 91, 92sylanbrc 585 . . . . . . . . . . . . . . 15 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ ((0..^𝑁) ∪ {𝑁}){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸)
94 elnn0uz 12275 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
95 eluzfz2 12907 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘0) → 𝑁 ∈ (0...𝑁))
9694, 95sylbi 219 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
97 fzelp1 12951 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (0...𝑁) → 𝑁 ∈ (0...(𝑁 + 1)))
98 fzosplit 13062 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (0...(𝑁 + 1)) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ (𝑁..^(𝑁 + 1))))
9996, 97, 983syl 18 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ (𝑁..^(𝑁 + 1))))
100 nn0z 11997 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
101 fzosn 13100 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → (𝑁..^(𝑁 + 1)) = {𝑁})
102100, 101syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (𝑁..^(𝑁 + 1)) = {𝑁})
103102uneq2d 4137 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → ((0..^𝑁) ∪ (𝑁..^(𝑁 + 1))) = ((0..^𝑁) ∪ {𝑁}))
10499, 103eqtrd 2854 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
105104ad2antrl 726 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
106105raleqdv 3414 . . . . . . . . . . . . . . 15 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (∀𝑖 ∈ (0..^(𝑁 + 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ ((0..^𝑁) ∪ {𝑁}){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸))
10793, 106mpbird 259 . . . . . . . . . . . . . 14 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ (0..^(𝑁 + 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸)
108 ccatlen 13919 . . . . . . . . . . . . . . . . . . 19 ((𝑇 ∈ Word 𝑉 ∧ ⟨“𝑆”⟩ ∈ Word 𝑉) → (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((♯‘𝑇) + (♯‘⟨“𝑆”⟩)))
1095, 20, 108syl2an 597 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((♯‘𝑇) + (♯‘⟨“𝑆”⟩)))
110109oveq1d 7163 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1) = (((♯‘𝑇) + (♯‘⟨“𝑆”⟩)) − 1))
111 simpl2 1187 . . . . . . . . . . . . . . . . . . 19 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (♯‘𝑇) = (𝑁 + 1))
112 s1len 13952 . . . . . . . . . . . . . . . . . . . 20 (♯‘⟨“𝑆”⟩) = 1
113112a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (♯‘⟨“𝑆”⟩) = 1)
114111, 113oveq12d 7166 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ((♯‘𝑇) + (♯‘⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))
115114oveq1d 7163 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (((♯‘𝑇) + (♯‘⟨“𝑆”⟩)) − 1) = (((𝑁 + 1) + 1) − 1))
116 peano2nn0 11929 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
117116nn0cnd 11949 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
118117, 55pncand 10990 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
119118ad2antrl 726 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
120110, 115, 1193eqtrd 2858 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1) = (𝑁 + 1))
121120oveq2d 7164 . . . . . . . . . . . . . . 15 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)) = (0..^(𝑁 + 1)))
122121raleqdv 3414 . . . . . . . . . . . . . 14 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ (0..^(𝑁 + 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸))
123107, 122mpbird 259 . . . . . . . . . . . . 13 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸)
12418, 22, 1233jca 1123 . . . . . . . . . . . 12 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸))
125109, 114eqtrd 2854 . . . . . . . . . . . 12 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))
126124, 125jca 514 . . . . . . . . . . 11 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1)))
127126ex 415 . . . . . . . . . 10 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) → ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
1284, 127syl 17 . . . . . . . . 9 (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
129128expd 418 . . . . . . . 8 (𝑇 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0 → ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1)))))
130129impcom 410 . . . . . . 7 ((𝑁 ∈ ℕ0𝑇 ∈ (𝑁 WWalksN 𝐺)) → ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
131130adantll 712 . . . . . 6 (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ 𝑇 ∈ (𝑁 WWalksN 𝐺)) → ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
132 iswwlksn 27608 . . . . . . . . . 10 ((𝑁 + 1) ∈ ℕ0 → ((𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ ((𝑇 ++ ⟨“𝑆”⟩) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
133116, 132syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ ((𝑇 ++ ⟨“𝑆”⟩) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
134133adantl 484 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ ((𝑇 ++ ⟨“𝑆”⟩) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
1351, 3iswwlks 27606 . . . . . . . . 9 ((𝑇 ++ ⟨“𝑆”⟩) ∈ (WWalks‘𝐺) ↔ ((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸))
136135anbi1i 625 . . . . . . . 8 (((𝑇 ++ ⟨“𝑆”⟩) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1)) ↔ (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1)))
137134, 136syl6bb 289 . . . . . . 7 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
138137adantr 483 . . . . . 6 (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ 𝑇 ∈ (𝑁 WWalksN 𝐺)) → ((𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
139131, 138sylibrd 261 . . . . 5 (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ 𝑇 ∈ (𝑁 WWalksN 𝐺)) → ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺)))
140139ex 415 . . . 4 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺))))
1411403adant3 1127 . . 3 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑇 ∈ Word 𝑉) → (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺))))
1422, 141mpcom 38 . 2 (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺)))
1431423impib 1111 1 ((𝑇 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wne 3014  wral 3136  Vcvv 3493  cun 3932  wss 3934  c0 4289  {csn 4559  {cpr 4561  cop 4565  cfv 6348  (class class class)co 7148  0cc0 10529  1c1 10530   + caddc 10532  cmin 10862  0cn0 11889  cz 11973  cuz 12235  ...cfz 12884  ..^cfzo 13025  chash 13682  Word cword 13853  lastSclsw 13906   ++ cconcat 13914  ⟨“cs1 13941  Vtxcvtx 26773  Edgcedg 26824  WWalkscwwlks 27595   WWalksN cwwlksn 27596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-hash 13683  df-word 13854  df-lsw 13907  df-concat 13915  df-s1 13942  df-wwlks 27600  df-wwlksn 27601
This theorem is referenced by:  wwlksnextbi  27664  wwlksnextsurj  27670
  Copyright terms: Public domain W3C validator