MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextfun Structured version   Visualization version   GIF version

Theorem wwlksnextfun 27675
Description: Lemma for wwlksnextbij 27679. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 27-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextbij0.v 𝑉 = (Vtx‘𝐺)
wwlksnextbij0.e 𝐸 = (Edg‘𝐺)
wwlksnextbij0.d 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
wwlksnextbij0.r 𝑅 = {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}
wwlksnextbij0.f 𝐹 = (𝑡𝐷 ↦ (lastS‘𝑡))
Assertion
Ref Expression
wwlksnextfun (𝑁 ∈ ℕ0𝐹:𝐷𝑅)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑊   𝑡,𝐷   𝑛,𝐸   𝑤,𝐸   𝑡,𝑁,𝑤   𝑡,𝑅   𝑛,𝑉   𝑤,𝑉   𝑛,𝑊   𝑡,𝑛
Allowed substitution hints:   𝐷(𝑤,𝑛)   𝑅(𝑤,𝑛)   𝐸(𝑡)   𝐹(𝑤,𝑡,𝑛)   𝐺(𝑡,𝑛)   𝑁(𝑛)   𝑉(𝑡)   𝑊(𝑡)

Proof of Theorem wwlksnextfun
StepHypRef Expression
1 fveqeq2 6678 . . . . . 6 (𝑤 = 𝑡 → ((♯‘𝑤) = (𝑁 + 2) ↔ (♯‘𝑡) = (𝑁 + 2)))
2 oveq1 7162 . . . . . . 7 (𝑤 = 𝑡 → (𝑤 prefix (𝑁 + 1)) = (𝑡 prefix (𝑁 + 1)))
32eqeq1d 2823 . . . . . 6 (𝑤 = 𝑡 → ((𝑤 prefix (𝑁 + 1)) = 𝑊 ↔ (𝑡 prefix (𝑁 + 1)) = 𝑊))
4 fveq2 6669 . . . . . . . 8 (𝑤 = 𝑡 → (lastS‘𝑤) = (lastS‘𝑡))
54preq2d 4675 . . . . . . 7 (𝑤 = 𝑡 → {(lastS‘𝑊), (lastS‘𝑤)} = {(lastS‘𝑊), (lastS‘𝑡)})
65eleq1d 2897 . . . . . 6 (𝑤 = 𝑡 → ({(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))
71, 3, 63anbi123d 1432 . . . . 5 (𝑤 = 𝑡 → (((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) ↔ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)))
8 wwlksnextbij0.d . . . . 5 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
97, 8elrab2 3682 . . . 4 (𝑡𝐷 ↔ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)))
10 simpll 765 . . . . . . . . . . . 12 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → 𝑡 ∈ Word 𝑉)
11 nn0re 11905 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
12 2re 11710 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
1312a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
14 nn0ge0 11921 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
15 2pos 11739 . . . . . . . . . . . . . . . . 17 0 < 2
1615a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → 0 < 2)
1711, 13, 14, 16addgegt0d 11212 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 2))
1817ad2antlr 725 . . . . . . . . . . . . . 14 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → 0 < (𝑁 + 2))
19 breq2 5069 . . . . . . . . . . . . . . 15 ((♯‘𝑡) = (𝑁 + 2) → (0 < (♯‘𝑡) ↔ 0 < (𝑁 + 2)))
2019adantl 484 . . . . . . . . . . . . . 14 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → (0 < (♯‘𝑡) ↔ 0 < (𝑁 + 2)))
2118, 20mpbird 259 . . . . . . . . . . . . 13 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → 0 < (♯‘𝑡))
22 hashgt0n0 13725 . . . . . . . . . . . . 13 ((𝑡 ∈ Word 𝑉 ∧ 0 < (♯‘𝑡)) → 𝑡 ≠ ∅)
2310, 21, 22syl2anc 586 . . . . . . . . . . . 12 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → 𝑡 ≠ ∅)
2410, 23jca 514 . . . . . . . . . . 11 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅))
2524expcom 416 . . . . . . . . . 10 ((♯‘𝑡) = (𝑁 + 2) → ((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅)))
26253ad2ant1 1129 . . . . . . . . 9 (((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸) → ((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅)))
2726expd 418 . . . . . . . 8 (((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸) → (𝑡 ∈ Word 𝑉 → (𝑁 ∈ ℕ0 → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅))))
2827impcom 410 . . . . . . 7 ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)) → (𝑁 ∈ ℕ0 → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅)))
2928impcom 410 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))) → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅))
30 lswcl 13919 . . . . . 6 ((𝑡 ∈ Word 𝑉𝑡 ≠ ∅) → (lastS‘𝑡) ∈ 𝑉)
3129, 30syl 17 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))) → (lastS‘𝑡) ∈ 𝑉)
32 simprr3 1219 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))) → {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)
3331, 32jca 514 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))) → ((lastS‘𝑡) ∈ 𝑉 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))
349, 33sylan2b 595 . . 3 ((𝑁 ∈ ℕ0𝑡𝐷) → ((lastS‘𝑡) ∈ 𝑉 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))
35 preq2 4669 . . . . 5 (𝑛 = (lastS‘𝑡) → {(lastS‘𝑊), 𝑛} = {(lastS‘𝑊), (lastS‘𝑡)})
3635eleq1d 2897 . . . 4 (𝑛 = (lastS‘𝑡) → ({(lastS‘𝑊), 𝑛} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))
37 wwlksnextbij0.r . . . 4 𝑅 = {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}
3836, 37elrab2 3682 . . 3 ((lastS‘𝑡) ∈ 𝑅 ↔ ((lastS‘𝑡) ∈ 𝑉 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))
3934, 38sylibr 236 . 2 ((𝑁 ∈ ℕ0𝑡𝐷) → (lastS‘𝑡) ∈ 𝑅)
40 wwlksnextbij0.f . 2 𝐹 = (𝑡𝐷 ↦ (lastS‘𝑡))
4139, 40fmptd 6877 1 (𝑁 ∈ ℕ0𝐹:𝐷𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  {crab 3142  c0 4290  {cpr 4568   class class class wbr 5065  cmpt 5145  wf 6350  cfv 6354  (class class class)co 7155  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   < clt 10674  2c2 11691  0cn0 11896  chash 13689  Word cword 13860  lastSclsw 13913   prefix cpfx 14031  Vtxcvtx 26780  Edgcedg 26831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-n0 11897  df-xnn0 11967  df-z 11981  df-uz 12243  df-fz 12892  df-fzo 13033  df-hash 13690  df-word 13861  df-lsw 13914
This theorem is referenced by:  wwlksnextinj  27676  wwlksnextsurj  27677
  Copyright terms: Public domain W3C validator