Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wwlksnred Structured version   Visualization version   GIF version

Theorem wwlksnred 41093
Description: Reduction of a walk (as word) by removing the trailing edge/vertex. (Contributed by Alexander van der Vekens, 4-Aug-2018.) (Revised by AV, 16-Apr-2021.)
Assertion
Ref Expression
wwlksnred (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalkSN 𝐺) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺)))

Proof of Theorem wwlksnred
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 peano2nn0 11180 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 iswwlksn 41036 . . 3 ((𝑁 + 1) ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalkSN 𝐺) ↔ (𝑊 ∈ (WWalkS‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))))
31, 2syl 17 . 2 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalkSN 𝐺) ↔ (𝑊 ∈ (WWalkS‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))))
4 eqid 2609 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2609 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
64, 5iswwlks 41034 . . . 4 (𝑊 ∈ (WWalkS‘𝐺) ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
7 simp1 1053 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ Word (Vtx‘𝐺))
8 nn0p1nn 11179 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
983ad2ant3 1076 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ)
101nn0red 11199 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
1110lep1d 10804 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
12113ad2ant3 1076 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
13 breq2 4581 . . . . . . . . . . . . . 14 ((#‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ≤ (#‘𝑊) ↔ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
14133ad2ant2 1075 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 1) ≤ (#‘𝑊) ↔ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
1512, 14mpbird 245 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (#‘𝑊))
16 swrdn0 13228 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ ℕ ∧ (𝑁 + 1) ≤ (#‘𝑊)) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅)
177, 9, 15, 16syl3anc 1317 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅)
18173exp 1255 . . . . . . . . . 10 (𝑊 ∈ Word (Vtx‘𝐺) → ((#‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅)))
19183ad2ant2 1075 . . . . . . . . 9 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((#‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅)))
2019imp 443 . . . . . . . 8 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅))
2120impcom 444 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅)
22 swrdcl 13217 . . . . . . . . . 10 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ Word (Vtx‘𝐺))
23223ad2ant2 1075 . . . . . . . . 9 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ Word (Vtx‘𝐺))
2423adantr 479 . . . . . . . 8 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ Word (Vtx‘𝐺))
2524adantl 480 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ Word (Vtx‘𝐺))
26 oveq1 6534 . . . . . . . . . . . . . . . . . . . . 21 ((#‘𝑊) = ((𝑁 + 1) + 1) → ((#‘𝑊) − 1) = (((𝑁 + 1) + 1) − 1))
271nn0cnd 11200 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
28 1cnd 9912 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
2927, 28pncand 10244 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
3026, 29sylan9eq 2663 . . . . . . . . . . . . . . . . . . . 20 (((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ((#‘𝑊) − 1) = (𝑁 + 1))
3130oveq2d 6543 . . . . . . . . . . . . . . . . . . 19 (((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (0..^((#‘𝑊) − 1)) = (0..^(𝑁 + 1)))
3231raleqdv 3120 . . . . . . . . . . . . . . . . . 18 (((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
3332adantl 480 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
34 nn0z 11233 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
35 nn0z 11233 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
361, 35syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
37 nn0re 11148 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3837lep1d 10804 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0𝑁 ≤ (𝑁 + 1))
3934, 36, 383jca 1234 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑁 ≤ (𝑁 + 1)))
4039ad2antll 760 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑁 ≤ (𝑁 + 1)))
41 eluz2 11525 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 + 1) ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑁 ≤ (𝑁 + 1)))
4240, 41sylibr 222 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (ℤ𝑁))
43 fzoss2 12320 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 + 1) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
4442, 43syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
45 ssralv 3628 . . . . . . . . . . . . . . . . . . 19 ((0..^𝑁) ⊆ (0..^(𝑁 + 1)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
4644, 45syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
47 simpl 471 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → 𝑊 ∈ Word (Vtx‘𝐺))
4847adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑊 ∈ Word (Vtx‘𝐺))
49 nn0fz0 12261 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 + 1) ∈ ℕ0 ↔ (𝑁 + 1) ∈ (0...(𝑁 + 1)))
501, 49sylib 206 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (0...(𝑁 + 1)))
5150ad2antll 760 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (0...(𝑁 + 1)))
52 fzelp1 12218 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 + 1) ∈ (0...(𝑁 + 1)) → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
5351, 52syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
54 oveq2 6535 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((#‘𝑊) = ((𝑁 + 1) + 1) → (0...(#‘𝑊)) = (0...((𝑁 + 1) + 1)))
5554eleq2d 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((#‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ∈ (0...(#‘𝑊)) ↔ (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1))))
5655adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 1) ∈ (0...(#‘𝑊)) ↔ (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1))))
5756adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → ((𝑁 + 1) ∈ (0...(#‘𝑊)) ↔ (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1))))
5853, 57mpbird 245 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (0...(#‘𝑊)))
5958adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑁 + 1) ∈ (0...(#‘𝑊)))
60 fzossfzop1 12367 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ0 → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
6160sseld 3566 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ0 → (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^(𝑁 + 1))))
6261ad2antll 760 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^(𝑁 + 1))))
6362imp 443 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^(𝑁 + 1)))
64 swrd0fv 13237 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(#‘𝑊)) ∧ 𝑖 ∈ (0..^(𝑁 + 1))) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖) = (𝑊𝑖))
6548, 59, 63, 64syl3anc 1317 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖) = (𝑊𝑖))
6665eqcomd 2615 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑊𝑖) = ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖))
67 fzofzp1 12386 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (0...𝑁))
6867adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0...𝑁))
69 fzval3 12359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1)))
7069eqcomd 2615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℤ → (0..^(𝑁 + 1)) = (0...𝑁))
7134, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0 → (0..^(𝑁 + 1)) = (0...𝑁))
7271eleq2d 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ0 → ((𝑖 + 1) ∈ (0..^(𝑁 + 1)) ↔ (𝑖 + 1) ∈ (0...𝑁)))
7372ad2antll 760 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → ((𝑖 + 1) ∈ (0..^(𝑁 + 1)) ↔ (𝑖 + 1) ∈ (0...𝑁)))
7473adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑖 + 1) ∈ (0..^(𝑁 + 1)) ↔ (𝑖 + 1) ∈ (0...𝑁)))
7568, 74mpbird 245 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0..^(𝑁 + 1)))
76 swrd0fv 13237 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(#‘𝑊)) ∧ (𝑖 + 1) ∈ (0..^(𝑁 + 1))) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
7748, 59, 75, 76syl3anc 1317 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
7877eqcomd 2615 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑊‘(𝑖 + 1)) = ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1)))
7966, 78preq12d 4219 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))})
8079eleq1d 2671 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8180biimpd 217 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8281ralimdva 2944 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8346, 82syld 45 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8433, 83sylbid 228 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8584imp 443 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ (0..^𝑁){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
86 nn0cn 11149 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
8786, 28pncand 10244 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
8887oveq2d 6543 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (0..^((𝑁 + 1) − 1)) = (0..^𝑁))
8988ad2antll 760 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (0..^((𝑁 + 1) − 1)) = (0..^𝑁))
9089adantr 479 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (0..^((𝑁 + 1) − 1)) = (0..^𝑁))
9190raleqdv 3120 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^𝑁){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9285, 91mpbird 245 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
931ad2antll 760 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ ℕ0)
94 simpl 471 . . . . . . . . . . . . . . . . . . . 20 (((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (#‘𝑊) = ((𝑁 + 1) + 1))
9594adantl 480 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (#‘𝑊) = ((𝑁 + 1) + 1))
96 swrd0len0 13234 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ ℕ0 ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑁 + 1))
9747, 93, 95, 96syl3anc 1317 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑁 + 1))
9897oveq1d 6542 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → ((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1) = ((𝑁 + 1) − 1))
9998oveq2d 6543 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)) = (0..^((𝑁 + 1) − 1)))
10099raleqdv 3120 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
101100adantr 479 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
10292, 101mpbird 245 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
103102exp31 627 . . . . . . . . . . . 12 (𝑊 ∈ Word (Vtx‘𝐺) → (((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
104103com23 83 . . . . . . . . . . 11 (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
105104imp 443 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
1061053adant1 1071 . . . . . . . . 9 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
107106expdimp 451 . . . . . . . 8 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
108107impcom 444 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))) → ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
1094, 5iswwlks 41034 . . . . . . 7 ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (WWalkS‘𝐺) ↔ ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅ ∧ (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
11021, 25, 108, 109syl3anbrc 1238 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (WWalkS‘𝐺))
111 peano2nn0 11180 . . . . . . . . . . . . . . . 16 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
1121, 111syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
113 elfz2nn0 12255 . . . . . . . . . . . . . . 15 ((𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)) ↔ ((𝑁 + 1) ∈ ℕ0 ∧ ((𝑁 + 1) + 1) ∈ ℕ0 ∧ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
1141, 112, 11, 113syl3anbrc 1238 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
115114adantl 480 . . . . . . . . . . . . 13 (((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
116115, 56mpbird 245 . . . . . . . . . . . 12 (((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...(#‘𝑊)))
117116anim2i 590 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((#‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(#‘𝑊))))
118117exp32 628 . . . . . . . . . 10 (𝑊 ∈ Word (Vtx‘𝐺) → ((#‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(#‘𝑊))))))
1191183ad2ant2 1075 . . . . . . . . 9 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((#‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(#‘𝑊))))))
120119imp 443 . . . . . . . 8 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(#‘𝑊)))))
121120impcom 444 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(#‘𝑊))))
122 swrd0len 13220 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(#‘𝑊))) → (#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑁 + 1))
123121, 122syl 17 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))) → (#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑁 + 1))
124 iswwlksn 41036 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺) ↔ ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (WWalkS‘𝐺) ∧ (#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑁 + 1))))
125124adantr 479 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺) ↔ ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (WWalkS‘𝐺) ∧ (#‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑁 + 1))))
126110, 123, 125mpbir2and 958 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺))
127126expcom 449 . . . 4 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺)))
1286, 127sylanb 487 . . 3 ((𝑊 ∈ (WWalkS‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺)))
129128com12 32 . 2 (𝑁 ∈ ℕ0 → ((𝑊 ∈ (WWalkS‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺)))
1303, 129sylbid 228 1 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalkSN 𝐺) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wral 2895  wss 3539  c0 3873  {cpr 4126  cop 4130   class class class wbr 4577  cfv 5790  (class class class)co 6527  0cc0 9792  1c1 9793   + caddc 9795  cle 9931  cmin 10117  cn 10867  0cn0 11139  cz 11210  cuz 11519  ...cfz 12152  ..^cfzo 12289  #chash 12934  Word cword 13092   substr csubstr 13096  Vtxcvtx 40224  Edgcedga 40346  WWalkScwwlks 41023   WWalkSN cwwlksn 41024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-n0 11140  df-z 11211  df-uz 11520  df-fz 12153  df-fzo 12290  df-hash 12935  df-word 13100  df-substr 13104  df-wwlks 41028  df-wwlksn 41029
This theorem is referenced by:  wwlksnextbi  41095  wwlksnredwwlkn  41096
  Copyright terms: Public domain W3C validator