Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wzel Structured version   Visualization version   GIF version

Theorem wzel 32096
Description: The zero of a well-founded set is a member of that set. (Contributed by Scott Fenton, 13-Jun-2018.) (Revised by AV, 10-Oct-2021.)
Assertion
Ref Expression
wzel ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → inf(𝐴, 𝐴, 𝑅) ∈ 𝐴)

Proof of Theorem wzel
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 weso 5257 . . 3 (𝑅 We 𝐴𝑅 Or 𝐴)
213ad2ant1 1128 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → 𝑅 Or 𝐴)
3 simp1 1131 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → 𝑅 We 𝐴)
4 simp2 1132 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → 𝑅 Se 𝐴)
5 ssid 3765 . . . . 5 𝐴𝐴
65a1i 11 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → 𝐴𝐴)
7 simp3 1133 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → 𝐴 ≠ ∅)
8 tz6.26 5872 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐴𝐴𝐴 ≠ ∅)) → ∃𝑥𝐴 Pred(𝑅, 𝐴, 𝑥) = ∅)
93, 4, 6, 7, 8syl22anc 1478 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → ∃𝑥𝐴 Pred(𝑅, 𝐴, 𝑥) = ∅)
10 vex 3343 . . . . . . . . . . . 12 𝑥 ∈ V
11 vex 3343 . . . . . . . . . . . . 13 𝑦 ∈ V
1211elpred 5854 . . . . . . . . . . . 12 (𝑥 ∈ V → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) ↔ (𝑦𝐴𝑦𝑅𝑥)))
1310, 12ax-mp 5 . . . . . . . . . . 11 (𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) ↔ (𝑦𝐴𝑦𝑅𝑥))
1413notbii 309 . . . . . . . . . 10 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) ↔ ¬ (𝑦𝐴𝑦𝑅𝑥))
15 imnan 437 . . . . . . . . . 10 ((𝑦𝐴 → ¬ 𝑦𝑅𝑥) ↔ ¬ (𝑦𝐴𝑦𝑅𝑥))
1614, 15bitr4i 267 . . . . . . . . 9 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) ↔ (𝑦𝐴 → ¬ 𝑦𝑅𝑥))
17 pm2.27 42 . . . . . . . . . . 11 (𝑦𝐴 → ((𝑦𝐴 → ¬ 𝑦𝑅𝑥) → ¬ 𝑦𝑅𝑥))
1817ad2antll 767 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑦𝐴 → ¬ 𝑦𝑅𝑥) → ¬ 𝑦𝑅𝑥))
19 breq1 4807 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑧𝑅𝑦𝑥𝑅𝑦))
2019rspcev 3449 . . . . . . . . . . . 12 ((𝑥𝐴𝑥𝑅𝑦) → ∃𝑧𝐴 𝑧𝑅𝑦)
2120ex 449 . . . . . . . . . . 11 (𝑥𝐴 → (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))
2221ad2antrl 766 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))
2318, 22jctird 568 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑦𝐴 → ¬ 𝑦𝑅𝑥) → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
2416, 23syl5bi 232 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → (¬ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
2524expr 644 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ 𝑥𝐴) → (𝑦𝐴 → (¬ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))))
2625com23 86 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ 𝑥𝐴) → (¬ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) → (𝑦𝐴 → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))))
2726alimdv 1994 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ 𝑥𝐴) → (∀𝑦 ¬ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) → ∀𝑦(𝑦𝐴 → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))))
28 eq0 4072 . . . . 5 (Pred(𝑅, 𝐴, 𝑥) = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥))
29 r19.26 3202 . . . . . 6 (∀𝑦𝐴𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))
30 df-ral 3055 . . . . . 6 (∀𝑦𝐴𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)) ↔ ∀𝑦(𝑦𝐴 → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
3129, 30bitr3i 266 . . . . 5 ((∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)) ↔ ∀𝑦(𝑦𝐴 → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
3227, 28, 313imtr4g 285 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ 𝑥𝐴) → (Pred(𝑅, 𝐴, 𝑥) = ∅ → (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
3332reximdva 3155 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → (∃𝑥𝐴 Pred(𝑅, 𝐴, 𝑥) = ∅ → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
349, 33mpd 15 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))
352, 34infcl 8561 1 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → inf(𝐴, 𝐴, 𝑅) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072  wal 1630   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  Vcvv 3340  wss 3715  c0 4058   class class class wbr 4804   Or wor 5186   Se wse 5223   We wwe 5224  Predcpred 5840  infcinf 8514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-cnv 5274  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-iota 6012  df-riota 6775  df-sup 8515  df-inf 8516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator