MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddass Structured version   Visualization version   GIF version

Theorem xaddass 12019
Description: Associativity of extended real addition. The correct condition here is "it is not the case that both +∞ and -∞ appear as one of 𝐴, 𝐵, 𝐶, i.e. ¬ {+∞, -∞} ⊆ {𝐴, 𝐵, 𝐶}", but this condition is difficult to work with, so we break the theorem into two parts: this one, where -∞ is not present in 𝐴, 𝐵, 𝐶, and xaddass2 12020, where +∞ is not present. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddass (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))

Proof of Theorem xaddass
StepHypRef Expression
1 recn 9971 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 recn 9971 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
3 recn 9971 . . . . . . . . . 10 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
4 addass 9968 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
51, 2, 3, 4syl3an 1365 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
653expa 1262 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
7 readdcl 9964 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
8 rexadd 12005 . . . . . . . . 9 (((𝐴 + 𝐵) ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) +𝑒 𝐶) = ((𝐴 + 𝐵) + 𝐶))
97, 8sylan 488 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) +𝑒 𝐶) = ((𝐴 + 𝐵) + 𝐶))
10 readdcl 9964 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
11 rexadd 12005 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ) → (𝐴 +𝑒 (𝐵 + 𝐶)) = (𝐴 + (𝐵 + 𝐶)))
1210, 11sylan2 491 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐴 +𝑒 (𝐵 + 𝐶)) = (𝐴 + (𝐵 + 𝐶)))
1312anassrs 679 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 +𝑒 (𝐵 + 𝐶)) = (𝐴 + (𝐵 + 𝐶)))
146, 9, 133eqtr4d 2670 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 + 𝐶)))
15 rexadd 12005 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
1615adantr 481 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
1716oveq1d 6620 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = ((𝐴 + 𝐵) +𝑒 𝐶))
18 rexadd 12005 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
1918adantll 749 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
2019oveq2d 6621 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) = (𝐴 +𝑒 (𝐵 + 𝐶)))
2114, 17, 203eqtr4d 2670 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
2221adantll 749 . . . . 5 (((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
23 oveq2 6613 . . . . . . . . 9 (𝐶 = +∞ → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = ((𝐴 +𝑒 𝐵) +𝑒 +∞))
24 simp1l 1083 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → 𝐴 ∈ ℝ*)
25 simp2l 1085 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → 𝐵 ∈ ℝ*)
26 xaddcl 12012 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
2724, 25, 26syl2anc 692 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
28 xaddnemnf 12009 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)
29283adant3 1079 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)
30 xaddpnf1 11999 . . . . . . . . . 10 (((𝐴 +𝑒 𝐵) ∈ ℝ* ∧ (𝐴 +𝑒 𝐵) ≠ -∞) → ((𝐴 +𝑒 𝐵) +𝑒 +∞) = +∞)
3127, 29, 30syl2anc 692 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 +∞) = +∞)
3223, 31sylan9eqr 2682 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐶 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = +∞)
33 xaddpnf1 11999 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
34333ad2ant1 1080 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐴 +𝑒 +∞) = +∞)
3534adantr 481 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐶 = +∞) → (𝐴 +𝑒 +∞) = +∞)
3632, 35eqtr4d 2663 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐶 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 +∞))
37 oveq2 6613 . . . . . . . . 9 (𝐶 = +∞ → (𝐵 +𝑒 𝐶) = (𝐵 +𝑒 +∞))
38 xaddpnf1 11999 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (𝐵 +𝑒 +∞) = +∞)
39383ad2ant2 1081 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐵 +𝑒 +∞) = +∞)
4037, 39sylan9eqr 2682 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐶 = +∞) → (𝐵 +𝑒 𝐶) = +∞)
4140oveq2d 6621 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐶 = +∞) → (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) = (𝐴 +𝑒 +∞))
4236, 41eqtr4d 2663 . . . . . 6 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐶 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
4342adantlr 750 . . . . 5 (((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐶 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
44 simp3 1061 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐶 ∈ ℝ*𝐶 ≠ -∞))
45 xrnemnf 11895 . . . . . . 7 ((𝐶 ∈ ℝ*𝐶 ≠ -∞) ↔ (𝐶 ∈ ℝ ∨ 𝐶 = +∞))
4644, 45sylib 208 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞))
4746adantr 481 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞))
4822, 43, 47mpjaodan 826 . . . 4 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
4948anassrs 679 . . 3 (((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
50 xaddpnf2 12000 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐶 ≠ -∞) → (+∞ +𝑒 𝐶) = +∞)
51503ad2ant3 1082 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (+∞ +𝑒 𝐶) = +∞)
5251, 34eqtr4d 2663 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (+∞ +𝑒 𝐶) = (𝐴 +𝑒 +∞))
5352adantr 481 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐵 = +∞) → (+∞ +𝑒 𝐶) = (𝐴 +𝑒 +∞))
54 oveq2 6613 . . . . . . 7 (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞))
5554, 34sylan9eqr 2682 . . . . . 6 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) = +∞)
5655oveq1d 6620 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (+∞ +𝑒 𝐶))
57 oveq1 6612 . . . . . . 7 (𝐵 = +∞ → (𝐵 +𝑒 𝐶) = (+∞ +𝑒 𝐶))
5857, 51sylan9eqr 2682 . . . . . 6 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐵 = +∞) → (𝐵 +𝑒 𝐶) = +∞)
5958oveq2d 6621 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐵 = +∞) → (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) = (𝐴 +𝑒 +∞))
6053, 56, 593eqtr4d 2670 . . . 4 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
6160adantlr 750 . . 3 (((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
62 simpl2 1063 . . . 4 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 ∈ ℝ) → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
63 xrnemnf 11895 . . . 4 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
6462, 63sylib 208 . . 3 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 ∈ ℝ) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
6549, 61, 64mpjaodan 826 . 2 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
66 simpl3 1064 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (𝐶 ∈ ℝ*𝐶 ≠ -∞))
6766, 50syl 17 . . . 4 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (+∞ +𝑒 𝐶) = +∞)
68 simpl2l 1112 . . . . . 6 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ*)
69 simpl3l 1114 . . . . . 6 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → 𝐶 ∈ ℝ*)
70 xaddcl 12012 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
7168, 69, 70syl2anc 692 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
72 simpl2 1063 . . . . . 6 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
73 xaddnemnf 12009 . . . . . 6 (((𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐵 +𝑒 𝐶) ≠ -∞)
7472, 66, 73syl2anc 692 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (𝐵 +𝑒 𝐶) ≠ -∞)
75 xaddpnf2 12000 . . . . 5 (((𝐵 +𝑒 𝐶) ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ≠ -∞) → (+∞ +𝑒 (𝐵 +𝑒 𝐶)) = +∞)
7671, 74, 75syl2anc 692 . . . 4 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (+∞ +𝑒 (𝐵 +𝑒 𝐶)) = +∞)
7767, 76eqtr4d 2663 . . 3 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (+∞ +𝑒 𝐶) = (+∞ +𝑒 (𝐵 +𝑒 𝐶)))
78 simpr 477 . . . . . 6 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → 𝐴 = +∞)
7978oveq1d 6620 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
80 xaddpnf2 12000 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
8172, 80syl 17 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (+∞ +𝑒 𝐵) = +∞)
8279, 81eqtrd 2660 . . . 4 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐵) = +∞)
8382oveq1d 6620 . . 3 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (+∞ +𝑒 𝐶))
8478oveq1d 6620 . . 3 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) = (+∞ +𝑒 (𝐵 +𝑒 𝐶)))
8577, 83, 843eqtr4d 2670 . 2 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
86 simp1 1059 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
87 xrnemnf 11895 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
8886, 87sylib 208 . 2 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
8965, 85, 88mpjaodan 826 1 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1992  wne 2796  (class class class)co 6605  cc 9879  cr 9880   + caddc 9884  +∞cpnf 10016  -∞cmnf 10017  *cxr 10018   +𝑒 cxad 11888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-addass 9946  ax-i2m1 9949  ax-1ne0 9950  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-1st 7116  df-2nd 7117  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-xadd 11891
This theorem is referenced by:  xaddass2  12020  xpncan  12021  xadd4d  12073  xrs1mnd  19698  xlt2addrd  29359  xrge0addass  29467  xrge0npcan  29471  carsgclctunlem2  30154  caragenuncllem  40020
  Copyright terms: Public domain W3C validator