MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddcom Structured version   Visualization version   GIF version

Theorem xaddcom 12621
Description: The extended real addition operation is commutative. (Contributed by NM, 26-Dec-2011.)
Assertion
Ref Expression
xaddcom ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))

Proof of Theorem xaddcom
StepHypRef Expression
1 elxr 12499 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 12499 . . . 4 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3 recn 10615 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4 recn 10615 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
5 addcom 10814 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
63, 4, 5syl2an 595 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
7 rexadd 12613 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
8 rexadd 12613 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 +𝑒 𝐴) = (𝐵 + 𝐴))
98ancoms 459 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 𝐴) = (𝐵 + 𝐴))
106, 7, 93eqtr4d 2863 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
11 oveq2 7153 . . . . . . 7 (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞))
12 rexr 10675 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
13 renemnf 10678 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
14 xaddpnf1 12607 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
1512, 13, 14syl2anc 584 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 +𝑒 +∞) = +∞)
1611, 15sylan9eqr 2875 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) = +∞)
17 oveq1 7152 . . . . . . 7 (𝐵 = +∞ → (𝐵 +𝑒 𝐴) = (+∞ +𝑒 𝐴))
18 xaddpnf2 12608 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞)
1912, 13, 18syl2anc 584 . . . . . . 7 (𝐴 ∈ ℝ → (+∞ +𝑒 𝐴) = +∞)
2017, 19sylan9eqr 2875 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 +𝑒 𝐴) = +∞)
2116, 20eqtr4d 2856 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
22 oveq2 7153 . . . . . . 7 (𝐵 = -∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 -∞))
23 renepnf 10677 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
24 xaddmnf1 12609 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
2512, 23, 24syl2anc 584 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 +𝑒 -∞) = -∞)
2622, 25sylan9eqr 2875 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐵) = -∞)
27 oveq1 7152 . . . . . . 7 (𝐵 = -∞ → (𝐵 +𝑒 𝐴) = (-∞ +𝑒 𝐴))
28 xaddmnf2 12610 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (-∞ +𝑒 𝐴) = -∞)
2912, 23, 28syl2anc 584 . . . . . . 7 (𝐴 ∈ ℝ → (-∞ +𝑒 𝐴) = -∞)
3027, 29sylan9eqr 2875 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐵 +𝑒 𝐴) = -∞)
3126, 30eqtr4d 2856 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
3210, 21, 313jaodan 1422 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
332, 32sylan2b 593 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
34 pnfaddmnf 12611 . . . . . . . 8 (+∞ +𝑒 -∞) = 0
35 mnfaddpnf 12612 . . . . . . . 8 (-∞ +𝑒 +∞) = 0
3634, 35eqtr4i 2844 . . . . . . 7 (+∞ +𝑒 -∞) = (-∞ +𝑒 +∞)
37 simpr 485 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 = -∞) → 𝐵 = -∞)
3837oveq2d 7161 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = -∞) → (+∞ +𝑒 𝐵) = (+∞ +𝑒 -∞))
3937oveq1d 7160 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = -∞) → (𝐵 +𝑒 +∞) = (-∞ +𝑒 +∞))
4036, 38, 393eqtr4a 2879 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 = -∞) → (+∞ +𝑒 𝐵) = (𝐵 +𝑒 +∞))
41 xaddpnf2 12608 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
42 xaddpnf1 12607 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (𝐵 +𝑒 +∞) = +∞)
4341, 42eqtr4d 2856 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = (𝐵 +𝑒 +∞))
4440, 43pm2.61dane 3101 . . . . 5 (𝐵 ∈ ℝ* → (+∞ +𝑒 𝐵) = (𝐵 +𝑒 +∞))
4544adantl 482 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (+∞ +𝑒 𝐵) = (𝐵 +𝑒 +∞))
46 simpl 483 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → 𝐴 = +∞)
4746oveq1d 7160 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
4846oveq2d 7161 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐵 +𝑒 𝐴) = (𝐵 +𝑒 +∞))
4945, 47, 483eqtr4d 2863 . . 3 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
5035, 34eqtr4i 2844 . . . . . . 7 (-∞ +𝑒 +∞) = (+∞ +𝑒 -∞)
51 simpr 485 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 = +∞) → 𝐵 = +∞)
5251oveq2d 7161 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = +∞) → (-∞ +𝑒 𝐵) = (-∞ +𝑒 +∞))
5351oveq1d 7160 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = +∞) → (𝐵 +𝑒 -∞) = (+∞ +𝑒 -∞))
5450, 52, 533eqtr4a 2879 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 = +∞) → (-∞ +𝑒 𝐵) = (𝐵 +𝑒 -∞))
55 xaddmnf2 12610 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞)
56 xaddmnf1 12609 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (𝐵 +𝑒 -∞) = -∞)
5755, 56eqtr4d 2856 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = (𝐵 +𝑒 -∞))
5854, 57pm2.61dane 3101 . . . . 5 (𝐵 ∈ ℝ* → (-∞ +𝑒 𝐵) = (𝐵 +𝑒 -∞))
5958adantl 482 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (-∞ +𝑒 𝐵) = (𝐵 +𝑒 -∞))
60 simpl 483 . . . . 5 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → 𝐴 = -∞)
6160oveq1d 7160 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵))
6260oveq2d 7161 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (𝐵 +𝑒 𝐴) = (𝐵 +𝑒 -∞))
6359, 61, 623eqtr4d 2863 . . 3 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
6433, 49, 633jaoian 1421 . 2 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
651, 64sylanb 581 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3o 1078   = wceq 1528  wcel 2105  wne 3013  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525   + caddc 10528  +∞cpnf 10660  -∞cmnf 10661  *cxr 10662   +𝑒 cxad 12493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-xadd 12496
This theorem is referenced by:  xaddid2  12623  xleadd2a  12635  xltadd2  12638  xposdif  12643  xadd4d  12684  hashunx  13735  xrsnsgrp  20509  xrs1cmn  20513  blcld  23042  xrsxmet  23344  metdstri  23386  vtxdginducedm1  27252  xaddeq0  30403  xlt2addrd  30408  xrge0npcan  30608  esumle  31216  esumlef  31220  measun  31369  difelcarsg  31467  xaddcomd  41468
  Copyright terms: Public domain W3C validator