MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xadddi2 Structured version   Visualization version   GIF version

Theorem xadddi2 12078
Description: The assumption that the multiplier be real in xadddi 12076 can be relaxed if the addends have the same sign. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xadddi2 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))

Proof of Theorem xadddi2
StepHypRef Expression
1 simpr 477 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
2 simp2l 1085 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → 𝐵 ∈ ℝ*)
32ad2antrr 761 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ*)
4 simp3l 1087 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → 𝐶 ∈ ℝ*)
54ad2antrr 761 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 ∈ ℝ) → 𝐶 ∈ ℝ*)
6 xadddi 12076 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
71, 3, 5, 6syl3anc 1323 . . 3 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 ∈ ℝ) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
8 pnfxr 10044 . . . . . 6 +∞ ∈ ℝ*
94adantr 481 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 𝐶 ∈ ℝ*)
109adantr 481 . . . . . 6 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → 𝐶 ∈ ℝ*)
11 xmulcl 12054 . . . . . 6 ((+∞ ∈ ℝ*𝐶 ∈ ℝ*) → (+∞ ·e 𝐶) ∈ ℝ*)
128, 10, 11sylancr 694 . . . . 5 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → (+∞ ·e 𝐶) ∈ ℝ*)
138, 9, 11sylancr 694 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (+∞ ·e 𝐶) ∈ ℝ*)
14 simpl3r 1115 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 0 ≤ 𝐶)
15 0lepnf 11918 . . . . . . . . 9 0 ≤ +∞
16 xmulge0 12065 . . . . . . . . 9 (((+∞ ∈ ℝ* ∧ 0 ≤ +∞) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → 0 ≤ (+∞ ·e 𝐶))
178, 15, 16mpanl12 717 . . . . . . . 8 ((𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶) → 0 ≤ (+∞ ·e 𝐶))
189, 14, 17syl2anc 692 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 0 ≤ (+∞ ·e 𝐶))
19 ge0nemnf 11955 . . . . . . 7 (((+∞ ·e 𝐶) ∈ ℝ* ∧ 0 ≤ (+∞ ·e 𝐶)) → (+∞ ·e 𝐶) ≠ -∞)
2013, 18, 19syl2anc 692 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (+∞ ·e 𝐶) ≠ -∞)
2120adantr 481 . . . . 5 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → (+∞ ·e 𝐶) ≠ -∞)
22 xaddpnf2 12009 . . . . 5 (((+∞ ·e 𝐶) ∈ ℝ* ∧ (+∞ ·e 𝐶) ≠ -∞) → (+∞ +𝑒 (+∞ ·e 𝐶)) = +∞)
2312, 21, 22syl2anc 692 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → (+∞ +𝑒 (+∞ ·e 𝐶)) = +∞)
24 oveq1 6617 . . . . . 6 (𝐴 = +∞ → (𝐴 ·e 𝐵) = (+∞ ·e 𝐵))
25 oveq1 6617 . . . . . 6 (𝐴 = +∞ → (𝐴 ·e 𝐶) = (+∞ ·e 𝐶))
2624, 25oveq12d 6628 . . . . 5 (𝐴 = +∞ → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((+∞ ·e 𝐵) +𝑒 (+∞ ·e 𝐶)))
27 xmulpnf2 12056 . . . . . . 7 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (+∞ ·e 𝐵) = +∞)
282, 27sylan 488 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (+∞ ·e 𝐵) = +∞)
2928oveq1d 6625 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → ((+∞ ·e 𝐵) +𝑒 (+∞ ·e 𝐶)) = (+∞ +𝑒 (+∞ ·e 𝐶)))
3026, 29sylan9eqr 2677 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (+∞ +𝑒 (+∞ ·e 𝐶)))
31 oveq1 6617 . . . . 5 (𝐴 = +∞ → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (+∞ ·e (𝐵 +𝑒 𝐶)))
32 xaddcl 12021 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
332, 4, 32syl2anc 692 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
3433adantr 481 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
35 0xr 10038 . . . . . . . 8 0 ∈ ℝ*
3635a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 0 ∈ ℝ*)
372adantr 481 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ*)
38 simpr 477 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 0 < 𝐵)
39 xaddid1 12023 . . . . . . . . 9 (𝐵 ∈ ℝ* → (𝐵 +𝑒 0) = 𝐵)
4037, 39syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (𝐵 +𝑒 0) = 𝐵)
41 xleadd2a 12035 . . . . . . . . 9 (((0 ∈ ℝ*𝐶 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 0 ≤ 𝐶) → (𝐵 +𝑒 0) ≤ (𝐵 +𝑒 𝐶))
4236, 9, 37, 14, 41syl31anc 1326 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (𝐵 +𝑒 0) ≤ (𝐵 +𝑒 𝐶))
4340, 42eqbrtrrd 4642 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 𝐵 ≤ (𝐵 +𝑒 𝐶))
4436, 37, 34, 38, 43xrltletrd 11944 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 0 < (𝐵 +𝑒 𝐶))
45 xmulpnf2 12056 . . . . . 6 (((𝐵 +𝑒 𝐶) ∈ ℝ* ∧ 0 < (𝐵 +𝑒 𝐶)) → (+∞ ·e (𝐵 +𝑒 𝐶)) = +∞)
4634, 44, 45syl2anc 692 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (+∞ ·e (𝐵 +𝑒 𝐶)) = +∞)
4731, 46sylan9eqr 2677 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = +∞)
4823, 30, 473eqtr4rd 2666 . . 3 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
49 mnfxr 10048 . . . . . . 7 -∞ ∈ ℝ*
50 xmulcl 12054 . . . . . . 7 ((-∞ ∈ ℝ*𝐶 ∈ ℝ*) → (-∞ ·e 𝐶) ∈ ℝ*)
5149, 9, 50sylancr 694 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-∞ ·e 𝐶) ∈ ℝ*)
52 xnegmnf 11992 . . . . . . . . . . . 12 -𝑒-∞ = +∞
5352oveq1i 6620 . . . . . . . . . . 11 (-𝑒-∞ ·e 𝐶) = (+∞ ·e 𝐶)
54 xmulneg1 12050 . . . . . . . . . . . 12 ((-∞ ∈ ℝ*𝐶 ∈ ℝ*) → (-𝑒-∞ ·e 𝐶) = -𝑒(-∞ ·e 𝐶))
5549, 9, 54sylancr 694 . . . . . . . . . . 11 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-𝑒-∞ ·e 𝐶) = -𝑒(-∞ ·e 𝐶))
5653, 55syl5reqr 2670 . . . . . . . . . 10 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → -𝑒(-∞ ·e 𝐶) = (+∞ ·e 𝐶))
57 xnegpnf 11991 . . . . . . . . . . 11 -𝑒+∞ = -∞
5857a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → -𝑒+∞ = -∞)
5956, 58eqeq12d 2636 . . . . . . . . 9 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-𝑒(-∞ ·e 𝐶) = -𝑒+∞ ↔ (+∞ ·e 𝐶) = -∞))
60 xneg11 11997 . . . . . . . . . 10 (((-∞ ·e 𝐶) ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒(-∞ ·e 𝐶) = -𝑒+∞ ↔ (-∞ ·e 𝐶) = +∞))
6151, 8, 60sylancl 693 . . . . . . . . 9 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-𝑒(-∞ ·e 𝐶) = -𝑒+∞ ↔ (-∞ ·e 𝐶) = +∞))
6259, 61bitr3d 270 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → ((+∞ ·e 𝐶) = -∞ ↔ (-∞ ·e 𝐶) = +∞))
6362necon3bid 2834 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → ((+∞ ·e 𝐶) ≠ -∞ ↔ (-∞ ·e 𝐶) ≠ +∞))
6420, 63mpbid 222 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-∞ ·e 𝐶) ≠ +∞)
65 xaddmnf2 12011 . . . . . 6 (((-∞ ·e 𝐶) ∈ ℝ* ∧ (-∞ ·e 𝐶) ≠ +∞) → (-∞ +𝑒 (-∞ ·e 𝐶)) = -∞)
6651, 64, 65syl2anc 692 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-∞ +𝑒 (-∞ ·e 𝐶)) = -∞)
6766adantr 481 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = -∞) → (-∞ +𝑒 (-∞ ·e 𝐶)) = -∞)
68 oveq1 6617 . . . . . 6 (𝐴 = -∞ → (𝐴 ·e 𝐵) = (-∞ ·e 𝐵))
69 oveq1 6617 . . . . . 6 (𝐴 = -∞ → (𝐴 ·e 𝐶) = (-∞ ·e 𝐶))
7068, 69oveq12d 6628 . . . . 5 (𝐴 = -∞ → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((-∞ ·e 𝐵) +𝑒 (-∞ ·e 𝐶)))
71 xmulmnf2 12058 . . . . . . 7 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (-∞ ·e 𝐵) = -∞)
722, 71sylan 488 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-∞ ·e 𝐵) = -∞)
7372oveq1d 6625 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → ((-∞ ·e 𝐵) +𝑒 (-∞ ·e 𝐶)) = (-∞ +𝑒 (-∞ ·e 𝐶)))
7470, 73sylan9eqr 2677 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = -∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (-∞ +𝑒 (-∞ ·e 𝐶)))
75 oveq1 6617 . . . . 5 (𝐴 = -∞ → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (-∞ ·e (𝐵 +𝑒 𝐶)))
76 xmulmnf2 12058 . . . . . 6 (((𝐵 +𝑒 𝐶) ∈ ℝ* ∧ 0 < (𝐵 +𝑒 𝐶)) → (-∞ ·e (𝐵 +𝑒 𝐶)) = -∞)
7734, 44, 76syl2anc 692 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-∞ ·e (𝐵 +𝑒 𝐶)) = -∞)
7875, 77sylan9eqr 2677 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = -∞)
7967, 74, 783eqtr4rd 2666 . . 3 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
80 simpl1 1062 . . . 4 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 𝐴 ∈ ℝ*)
81 elxr 11902 . . . 4 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
8280, 81sylib 208 . . 3 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
837, 48, 79, 82mpjao3dan 1392 . 2 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
84 simp1 1059 . . . . . 6 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → 𝐴 ∈ ℝ*)
85 xmulcl 12054 . . . . . 6 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e 𝐶) ∈ ℝ*)
8684, 4, 85syl2anc 692 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴 ·e 𝐶) ∈ ℝ*)
8786adantr 481 . . . 4 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (𝐴 ·e 𝐶) ∈ ℝ*)
88 xaddid2 12024 . . . 4 ((𝐴 ·e 𝐶) ∈ ℝ* → (0 +𝑒 (𝐴 ·e 𝐶)) = (𝐴 ·e 𝐶))
8987, 88syl 17 . . 3 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (0 +𝑒 (𝐴 ·e 𝐶)) = (𝐴 ·e 𝐶))
90 oveq2 6618 . . . . . 6 (0 = 𝐵 → (𝐴 ·e 0) = (𝐴 ·e 𝐵))
9190eqcomd 2627 . . . . 5 (0 = 𝐵 → (𝐴 ·e 𝐵) = (𝐴 ·e 0))
92 xmul01 12048 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0)
93923ad2ant1 1080 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴 ·e 0) = 0)
9491, 93sylan9eqr 2677 . . . 4 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (𝐴 ·e 𝐵) = 0)
9594oveq1d 6625 . . 3 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (0 +𝑒 (𝐴 ·e 𝐶)))
96 oveq1 6617 . . . . . 6 (0 = 𝐵 → (0 +𝑒 𝐶) = (𝐵 +𝑒 𝐶))
9796eqcomd 2627 . . . . 5 (0 = 𝐵 → (𝐵 +𝑒 𝐶) = (0 +𝑒 𝐶))
98 xaddid2 12024 . . . . . 6 (𝐶 ∈ ℝ* → (0 +𝑒 𝐶) = 𝐶)
994, 98syl 17 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (0 +𝑒 𝐶) = 𝐶)
10097, 99sylan9eqr 2677 . . . 4 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (𝐵 +𝑒 𝐶) = 𝐶)
101100oveq2d 6626 . . 3 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e 𝐶))
10289, 95, 1013eqtr4rd 2666 . 2 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
103 simp2r 1086 . . 3 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → 0 ≤ 𝐵)
104 xrleloe 11929 . . . 4 ((0 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
10535, 2, 104sylancr 694 . . 3 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
106103, 105mpbid 222 . 2 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (0 < 𝐵 ∨ 0 = 𝐵))
10783, 102, 106mpjaodan 826 1 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3o 1035  w3a 1036   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4618  (class class class)co 6610  cr 9887  0cc0 9888  +∞cpnf 10023  -∞cmnf 10024  *cxr 10025   < clt 10026  cle 10027  -𝑒cxne 11895   +𝑒 cxad 11896   ·e cxmu 11897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-1st 7120  df-2nd 7121  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-xneg 11898  df-xadd 11899  df-xmul 11900
This theorem is referenced by:  xadddi2r  12079
  Copyright terms: Public domain W3C validator