MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddmnf2 Structured version   Visualization version   GIF version

Theorem xaddmnf2 12057
Description: Addition of negative infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddmnf2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (-∞ +𝑒 𝐴) = -∞)

Proof of Theorem xaddmnf2
StepHypRef Expression
1 mnfxr 10093 . . 3 -∞ ∈ ℝ*
2 xaddval 12051 . . 3 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞ +𝑒 𝐴) = if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴))))))
31, 2mpan 706 . 2 (𝐴 ∈ ℝ* → (-∞ +𝑒 𝐴) = if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴))))))
4 mnfnepnf 10092 . . . . 5 -∞ ≠ +∞
5 ifnefalse 4096 . . . . 5 (-∞ ≠ +∞ → if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴))))) = if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴)))))
64, 5ax-mp 5 . . . 4 if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴))))) = if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴))))
7 eqid 2621 . . . . 5 -∞ = -∞
87iftruei 4091 . . . 4 if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴)))) = if(𝐴 = +∞, 0, -∞)
96, 8eqtri 2643 . . 3 if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴))))) = if(𝐴 = +∞, 0, -∞)
10 ifnefalse 4096 . . 3 (𝐴 ≠ +∞ → if(𝐴 = +∞, 0, -∞) = -∞)
119, 10syl5eq 2667 . 2 (𝐴 ≠ +∞ → if(-∞ = +∞, if(𝐴 = -∞, 0, +∞), if(-∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (-∞ + 𝐴))))) = -∞)
123, 11sylan9eq 2675 1 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (-∞ +𝑒 𝐴) = -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1482  wcel 1989  wne 2793  ifcif 4084  (class class class)co 6647  0cc0 9933   + caddc 9936  +∞cpnf 10068  -∞cmnf 10069  *cxr 10070   +𝑒 cxad 11941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-mulcl 9995  ax-i2m1 10001
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-iota 5849  df-fun 5888  df-fv 5894  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-pnf 10073  df-mnf 10074  df-xr 10075  df-xadd 11944
This theorem is referenced by:  xaddnepnf  12065  xaddcom  12068  xaddid1  12069  xnegdi  12075  xpncan  12078  xleadd1a  12080  xlt2add  12087  xadddilem  12121  xadddi2  12124  xrsnsgrp  19776  xaddeq0  29503  supxrgelem  39372  supxrge  39373  xrlexaddrp  39387  infleinflem2  39406
  Copyright terms: Public domain W3C validator