MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddval Structured version   Visualization version   GIF version

Theorem xaddval 12608
Description: Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddval ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))))

Proof of Theorem xaddval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 485 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑥 = 𝐴)
21eqeq1d 2821 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = +∞ ↔ 𝐴 = +∞))
3 simpr 487 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
43eqeq1d 2821 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 = -∞ ↔ 𝐵 = -∞))
54ifbid 4487 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → if(𝑦 = -∞, 0, +∞) = if(𝐵 = -∞, 0, +∞))
61eqeq1d 2821 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = -∞ ↔ 𝐴 = -∞))
73eqeq1d 2821 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 = +∞ ↔ 𝐵 = +∞))
87ifbid 4487 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → if(𝑦 = +∞, 0, -∞) = if(𝐵 = +∞, 0, -∞))
9 oveq12 7157 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 + 𝑦) = (𝐴 + 𝐵))
104, 9ifbieq2d 4490 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → if(𝑦 = -∞, -∞, (𝑥 + 𝑦)) = if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))
117, 10ifbieq2d 4490 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))
126, 8, 11ifbieq12d 4492 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦)))) = if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))))
132, 5, 12ifbieq12d 4492 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))))
14 df-xadd 12500 . 2 +𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))))
15 c0ex 10627 . . . 4 0 ∈ V
16 pnfex 10686 . . . 4 +∞ ∈ V
1715, 16ifex 4513 . . 3 if(𝐵 = -∞, 0, +∞) ∈ V
18 mnfxr 10690 . . . . . 6 -∞ ∈ ℝ*
1918elexi 3512 . . . . 5 -∞ ∈ V
2015, 19ifex 4513 . . . 4 if(𝐵 = +∞, 0, -∞) ∈ V
21 ovex 7181 . . . . . 6 (𝐴 + 𝐵) ∈ V
2219, 21ifex 4513 . . . . 5 if(𝐵 = -∞, -∞, (𝐴 + 𝐵)) ∈ V
2316, 22ifex 4513 . . . 4 if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) ∈ V
2420, 23ifex 4513 . . 3 if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) ∈ V
2517, 24ifex 4513 . 2 if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) ∈ V
2613, 14, 25ovmpoa 7297 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1530  wcel 2107  ifcif 4465  (class class class)co 7148  0cc0 10529   + caddc 10532  +∞cpnf 10664  -∞cmnf 10665  *cxr 10666   +𝑒 cxad 12497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-mulcl 10591  ax-i2m1 10597
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-pnf 10669  df-mnf 10670  df-xr 10671  df-xadd 12500
This theorem is referenced by:  xaddpnf1  12611  xaddpnf2  12612  xaddmnf1  12613  xaddmnf2  12614  pnfaddmnf  12615  mnfaddpnf  12616  rexadd  12617
  Copyright terms: Public domain W3C validator