MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkobval Structured version   Visualization version   GIF version

Theorem xkobval 22197
Description: Alternative expression for the subbase of the compact-open topology. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypotheses
Ref Expression
xkoval.x 𝑋 = 𝑅
xkoval.k 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}
xkoval.t 𝑇 = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
Assertion
Ref Expression
xkobval ran 𝑇 = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})}
Distinct variable groups:   𝑘,𝑠,𝑣,𝐾   𝑓,𝑘,𝑠,𝑣,𝑥,𝑅   𝑆,𝑓,𝑘,𝑠,𝑣,𝑥   𝑇,𝑠   𝑘,𝑋,𝑥
Allowed substitution hints:   𝑇(𝑥,𝑣,𝑓,𝑘)   𝐾(𝑥,𝑓)   𝑋(𝑣,𝑓,𝑠)

Proof of Theorem xkobval
StepHypRef Expression
1 xkoval.t . . 3 𝑇 = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
21rnmpo 7287 . 2 ran 𝑇 = {𝑠 ∣ ∃𝑘𝐾𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}}
3 oveq2 7167 . . . . . 6 (𝑥 = 𝑘 → (𝑅t 𝑥) = (𝑅t 𝑘))
43eleq1d 2900 . . . . 5 (𝑥 = 𝑘 → ((𝑅t 𝑥) ∈ Comp ↔ (𝑅t 𝑘) ∈ Comp))
54rexrab 3690 . . . 4 (∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ 𝒫 𝑋((𝑅t 𝑘) ∈ Comp ∧ ∃𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
6 xkoval.k . . . . 5 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}
76rexeqi 3417 . . . 4 (∃𝑘𝐾𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
8 r19.42v 3353 . . . . 5 (∃𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ↔ ((𝑅t 𝑘) ∈ Comp ∧ ∃𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
98rexbii 3250 . . . 4 (∃𝑘 ∈ 𝒫 𝑋𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 𝑋((𝑅t 𝑘) ∈ Comp ∧ ∃𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
105, 7, 93bitr4i 305 . . 3 (∃𝑘𝐾𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ 𝒫 𝑋𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
1110abbii 2889 . 2 {𝑠 ∣ ∃𝑘𝐾𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})}
122, 11eqtri 2847 1 ran 𝑇 = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})}
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1536  wcel 2113  {cab 2802  wrex 3142  {crab 3145  wss 3939  𝒫 cpw 4542   cuni 4841  ran crn 5559  cima 5561  (class class class)co 7159  cmpo 7161  t crest 16697   Cn ccn 21835  Compccmp 21997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-cnv 5566  df-dm 5568  df-rn 5569  df-iota 6317  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164
This theorem is referenced by:  xkoccn  22230  xkoco1cn  22268  xkoco2cn  22269  xkoinjcn  22298
  Copyright terms: Public domain W3C validator