MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkofvcn Structured version   Visualization version   GIF version

Theorem xkofvcn 22286
Description: Joint continuity of the function value operation as a function on continuous function spaces. (Compare xkopjcn 22258.) (Contributed by Mario Carneiro, 20-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
xkofvcn.1 𝑋 = 𝑅
xkofvcn.2 𝐹 = (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥𝑋 ↦ (𝑓𝑥))
Assertion
Ref Expression
xkofvcn ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝐹 ∈ (((𝑆ko 𝑅) ×t 𝑅) Cn 𝑆))
Distinct variable groups:   𝑥,𝑓,𝑅   𝑆,𝑓,𝑥   𝑓,𝑋,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑓)

Proof of Theorem xkofvcn
Dummy variables 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xkofvcn.2 . 2 𝐹 = (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥𝑋 ↦ (𝑓𝑥))
2 nllytop 22075 . . . 4 (𝑅 ∈ 𝑛-Locally Comp → 𝑅 ∈ Top)
3 eqid 2821 . . . . 5 (𝑆ko 𝑅) = (𝑆ko 𝑅)
43xkotopon 22202 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
52, 4sylan 582 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
62adantr 483 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝑅 ∈ Top)
7 xkofvcn.1 . . . . 5 𝑋 = 𝑅
87toptopon 21519 . . . 4 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋))
96, 8sylib 220 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝑅 ∈ (TopOn‘𝑋))
105, 9cnmpt1st 22270 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥𝑋𝑓) ∈ (((𝑆ko 𝑅) ×t 𝑅) Cn (𝑆ko 𝑅)))
115, 9cnmpt2nd 22271 . . . . 5 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥𝑋𝑥) ∈ (((𝑆ko 𝑅) ×t 𝑅) Cn 𝑅))
12 1on 8103 . . . . . . 7 1o ∈ On
13 distopon 21599 . . . . . . 7 (1o ∈ On → 𝒫 1o ∈ (TopOn‘1o))
1412, 13mp1i 13 . . . . . 6 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝒫 1o ∈ (TopOn‘1o))
15 xkoccn 22221 . . . . . 6 ((𝒫 1o ∈ (TopOn‘1o) ∧ 𝑅 ∈ (TopOn‘𝑋)) → (𝑦𝑋 ↦ (1o × {𝑦})) ∈ (𝑅 Cn (𝑅ko 𝒫 1o)))
1614, 9, 15syl2anc 586 . . . . 5 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑦𝑋 ↦ (1o × {𝑦})) ∈ (𝑅 Cn (𝑅ko 𝒫 1o)))
17 sneq 4570 . . . . . 6 (𝑦 = 𝑥 → {𝑦} = {𝑥})
1817xpeq2d 5579 . . . . 5 (𝑦 = 𝑥 → (1o × {𝑦}) = (1o × {𝑥}))
195, 9, 11, 9, 16, 18cnmpt21 22273 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥𝑋 ↦ (1o × {𝑥})) ∈ (((𝑆ko 𝑅) ×t 𝑅) Cn (𝑅ko 𝒫 1o)))
20 distop 21597 . . . . . 6 (1o ∈ On → 𝒫 1o ∈ Top)
2112, 20mp1i 13 . . . . 5 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝒫 1o ∈ Top)
22 eqid 2821 . . . . . 6 (𝑅ko 𝒫 1o) = (𝑅ko 𝒫 1o)
2322xkotopon 22202 . . . . 5 ((𝒫 1o ∈ Top ∧ 𝑅 ∈ Top) → (𝑅ko 𝒫 1o) ∈ (TopOn‘(𝒫 1o Cn 𝑅)))
2421, 6, 23syl2anc 586 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑅ko 𝒫 1o) ∈ (TopOn‘(𝒫 1o Cn 𝑅)))
25 simpl 485 . . . . 5 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝑅 ∈ 𝑛-Locally Comp)
26 simpr 487 . . . . 5 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝑆 ∈ Top)
27 eqid 2821 . . . . . 6 (𝑔 ∈ (𝑅 Cn 𝑆), ∈ (𝒫 1o Cn 𝑅) ↦ (𝑔)) = (𝑔 ∈ (𝑅 Cn 𝑆), ∈ (𝒫 1o Cn 𝑅) ↦ (𝑔))
2827xkococn 22262 . . . . 5 ((𝒫 1o ∈ Top ∧ 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑔 ∈ (𝑅 Cn 𝑆), ∈ (𝒫 1o Cn 𝑅) ↦ (𝑔)) ∈ (((𝑆ko 𝑅) ×t (𝑅ko 𝒫 1o)) Cn (𝑆ko 𝒫 1o)))
2921, 25, 26, 28syl3anc 1367 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑔 ∈ (𝑅 Cn 𝑆), ∈ (𝒫 1o Cn 𝑅) ↦ (𝑔)) ∈ (((𝑆ko 𝑅) ×t (𝑅ko 𝒫 1o)) Cn (𝑆ko 𝒫 1o)))
30 coeq1 5722 . . . . 5 (𝑔 = 𝑓 → (𝑔) = (𝑓))
31 coeq2 5723 . . . . 5 ( = (1o × {𝑥}) → (𝑓) = (𝑓 ∘ (1o × {𝑥})))
3230, 31sylan9eq 2876 . . . 4 ((𝑔 = 𝑓 = (1o × {𝑥})) → (𝑔) = (𝑓 ∘ (1o × {𝑥})))
335, 9, 10, 19, 5, 24, 29, 32cnmpt22 22276 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥𝑋 ↦ (𝑓 ∘ (1o × {𝑥}))) ∈ (((𝑆ko 𝑅) ×t 𝑅) Cn (𝑆ko 𝒫 1o)))
34 eqid 2821 . . . . 5 (𝑆ko 𝒫 1o) = (𝑆ko 𝒫 1o)
3534xkotopon 22202 . . . 4 ((𝒫 1o ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝒫 1o) ∈ (TopOn‘(𝒫 1o Cn 𝑆)))
3621, 26, 35syl2anc 586 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑆ko 𝒫 1o) ∈ (TopOn‘(𝒫 1o Cn 𝑆)))
37 0lt1o 8123 . . . . 5 ∅ ∈ 1o
3837a1i 11 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → ∅ ∈ 1o)
39 unipw 5334 . . . . . 6 𝒫 1o = 1o
4039eqcomi 2830 . . . . 5 1o = 𝒫 1o
4140xkopjcn 22258 . . . 4 ((𝒫 1o ∈ Top ∧ 𝑆 ∈ Top ∧ ∅ ∈ 1o) → (𝑔 ∈ (𝒫 1o Cn 𝑆) ↦ (𝑔‘∅)) ∈ ((𝑆ko 𝒫 1o) Cn 𝑆))
4221, 26, 38, 41syl3anc 1367 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑔 ∈ (𝒫 1o Cn 𝑆) ↦ (𝑔‘∅)) ∈ ((𝑆ko 𝒫 1o) Cn 𝑆))
43 fveq1 6663 . . . 4 (𝑔 = (𝑓 ∘ (1o × {𝑥})) → (𝑔‘∅) = ((𝑓 ∘ (1o × {𝑥}))‘∅))
44 vex 3497 . . . . . . 7 𝑥 ∈ V
4544fconst 6559 . . . . . 6 (1o × {𝑥}):1o⟶{𝑥}
46 fvco3 6754 . . . . . 6 (((1o × {𝑥}):1o⟶{𝑥} ∧ ∅ ∈ 1o) → ((𝑓 ∘ (1o × {𝑥}))‘∅) = (𝑓‘((1o × {𝑥})‘∅)))
4745, 37, 46mp2an 690 . . . . 5 ((𝑓 ∘ (1o × {𝑥}))‘∅) = (𝑓‘((1o × {𝑥})‘∅))
4844fvconst2 6960 . . . . . . 7 (∅ ∈ 1o → ((1o × {𝑥})‘∅) = 𝑥)
4937, 48ax-mp 5 . . . . . 6 ((1o × {𝑥})‘∅) = 𝑥
5049fveq2i 6667 . . . . 5 (𝑓‘((1o × {𝑥})‘∅)) = (𝑓𝑥)
5147, 50eqtri 2844 . . . 4 ((𝑓 ∘ (1o × {𝑥}))‘∅) = (𝑓𝑥)
5243, 51syl6eq 2872 . . 3 (𝑔 = (𝑓 ∘ (1o × {𝑥})) → (𝑔‘∅) = (𝑓𝑥))
535, 9, 33, 36, 42, 52cnmpt21 22273 . 2 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥𝑋 ↦ (𝑓𝑥)) ∈ (((𝑆ko 𝑅) ×t 𝑅) Cn 𝑆))
541, 53eqeltrid 2917 1 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝐹 ∈ (((𝑆ko 𝑅) ×t 𝑅) Cn 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  c0 4290  𝒫 cpw 4538  {csn 4560   cuni 4831  cmpt 5138   × cxp 5547  ccom 5553  Oncon0 6185  wf 6345  cfv 6349  (class class class)co 7150  cmpo 7152  1oc1o 8089  Topctop 21495  TopOnctopon 21512   Cn ccn 21826  Compccmp 21988  𝑛-Locally cnlly 22067   ×t ctx 22162  ko cxko 22163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-rest 16690  df-topgen 16711  df-pt 16712  df-top 21496  df-topon 21513  df-bases 21548  df-ntr 21622  df-nei 21700  df-cn 21829  df-cnp 21830  df-cmp 21989  df-nlly 22069  df-tx 22164  df-xko 22165
This theorem is referenced by:  cnmptk1p  22287  cnmptk2  22288
  Copyright terms: Public domain W3C validator