![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xle2add | Structured version Visualization version GIF version |
Description: Extended real version of le2add 10548. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
xle2add | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 805 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → 𝐴 ∈ ℝ*) | |
2 | simprl 809 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → 𝐶 ∈ ℝ*) | |
3 | simplr 807 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → 𝐵 ∈ ℝ*) | |
4 | xleadd1a 12121 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 ≤ 𝐶) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵)) | |
5 | 4 | ex 449 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐶 → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵))) |
6 | 1, 2, 3, 5 | syl3anc 1366 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (𝐴 ≤ 𝐶 → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵))) |
7 | simprr 811 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → 𝐷 ∈ ℝ*) | |
8 | xleadd2a 12122 | . . . 4 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐵 ≤ 𝐷) → (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)) | |
9 | 8 | ex 449 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 ≤ 𝐷 → (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) |
10 | 3, 7, 2, 9 | syl3anc 1366 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (𝐵 ≤ 𝐷 → (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) |
11 | xaddcl 12108 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*) | |
12 | 11 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
13 | xaddcl 12108 | . . . 4 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 +𝑒 𝐵) ∈ ℝ*) | |
14 | 2, 3, 13 | syl2anc 694 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (𝐶 +𝑒 𝐵) ∈ ℝ*) |
15 | xaddcl 12108 | . . . 4 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*) → (𝐶 +𝑒 𝐷) ∈ ℝ*) | |
16 | 15 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (𝐶 +𝑒 𝐷) ∈ ℝ*) |
17 | xrletr 12027 | . . 3 ⊢ (((𝐴 +𝑒 𝐵) ∈ ℝ* ∧ (𝐶 +𝑒 𝐵) ∈ ℝ* ∧ (𝐶 +𝑒 𝐷) ∈ ℝ*) → (((𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵) ∧ (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) | |
18 | 12, 14, 16, 17 | syl3anc 1366 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (((𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵) ∧ (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) |
19 | 6, 10, 18 | syl2and 499 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 ∈ wcel 2030 class class class wbr 4685 (class class class)co 6690 ℝ*cxr 10111 ≤ cle 10113 +𝑒 cxad 11982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-xadd 11985 |
This theorem is referenced by: metnrmlem3 22711 xraddge02 29649 xrofsup 29661 esumpmono 30269 xadd0ge 39849 sge0split 40944 |
Copyright terms: Public domain | W3C validator |