MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xlemnf Structured version   Visualization version   GIF version

Theorem xlemnf 12550
Description: An extended real which is less than minus infinity is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.)
Assertion
Ref Expression
xlemnf (𝐴 ∈ ℝ* → (𝐴 ≤ -∞ ↔ 𝐴 = -∞))

Proof of Theorem xlemnf
StepHypRef Expression
1 mnfxr 10687 . . 3 -∞ ∈ ℝ*
2 xrlenlt 10695 . . 3 ((𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝐴 ≤ -∞ ↔ ¬ -∞ < 𝐴))
31, 2mpan2 687 . 2 (𝐴 ∈ ℝ* → (𝐴 ≤ -∞ ↔ ¬ -∞ < 𝐴))
4 ngtmnft 12549 . 2 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
53, 4bitr4d 283 1 (𝐴 ∈ ℝ* → (𝐴 ≤ -∞ ↔ 𝐴 = -∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207   = wceq 1528  wcel 2105   class class class wbr 5058  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670
This theorem is referenced by:  infxrmnf  12720  liminflbuz2  41976
  Copyright terms: Public domain W3C validator