Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimclim Structured version   Visualization version   GIF version

Theorem xlimclim 40551
 Description: Given a sequence of reals, it converges to a real number 𝐴 w.r.t. the standard topology on the reals, if and only if it converges to 𝐴 w.r.t. to the standard topology on the extended reals (see climreeq 40346). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimclim.m (𝜑𝑀 ∈ ℤ)
xlimclim.z 𝑍 = (ℤ𝑀)
xlimclim.f (𝜑𝐹:𝑍⟶ℝ)
xlimclim.a (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
xlimclim (𝜑 → (𝐹~~>*𝐴𝐹𝐴))

Proof of Theorem xlimclim
StepHypRef Expression
1 df-xlim 40546 . . . 4 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
21breqi 4808 . . 3 (𝐹~~>*𝐴𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴)
32a1i 11 . 2 (𝜑 → (𝐹~~>*𝐴𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴))
4 xrtgioo2 40300 . . 3 (topGen‘ran (,)) = ((ordTop‘ ≤ ) ↾t ℝ)
5 xlimclim.z . . 3 𝑍 = (ℤ𝑀)
6 reex 10217 . . . 4 ℝ ∈ V
76a1i 11 . . 3 (𝜑 → ℝ ∈ V)
8 letop 21210 . . . 4 (ordTop‘ ≤ ) ∈ Top
98a1i 11 . . 3 (𝜑 → (ordTop‘ ≤ ) ∈ Top)
10 xlimclim.a . . 3 (𝜑𝐴 ∈ ℝ)
11 xlimclim.m . . 3 (𝜑𝑀 ∈ ℤ)
12 xlimclim.f . . 3 (𝜑𝐹:𝑍⟶ℝ)
134, 5, 7, 9, 10, 11, 12lmss 21302 . 2 (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))
14 eqid 2758 . . 3 (⇝𝑡‘(topGen‘ran (,))) = (⇝𝑡‘(topGen‘ran (,)))
1514, 5, 11, 12climreeq 40346 . 2 (𝜑 → (𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴𝐹𝐴))
163, 13, 153bitrd 294 1 (𝜑 → (𝐹~~>*𝐴𝐹𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1630   ∈ wcel 2137  Vcvv 3338   class class class wbr 4802  ran crn 5265  ⟶wf 6043  ‘cfv 6047  ℝcr 10125   ≤ cle 10265  ℤcz 11567  ℤ≥cuz 11877  (,)cioo 12366   ⇝ cli 14412  topGenctg 16298  ordTopcordt 16359  Topctop 20898  ⇝𝑡clm 21230  ~~>*clsxlim 40545 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203  ax-pre-sup 10204 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-oadd 7731  df-er 7909  df-map 8023  df-pm 8024  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-fi 8480  df-sup 8511  df-inf 8512  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-div 10875  df-nn 11211  df-2 11269  df-3 11270  df-4 11271  df-5 11272  df-6 11273  df-7 11274  df-8 11275  df-9 11276  df-n0 11483  df-z 11568  df-dec 11684  df-uz 11878  df-q 11980  df-rp 12024  df-xneg 12137  df-xadd 12138  df-xmul 12139  df-ioo 12370  df-ioc 12371  df-ico 12372  df-icc 12373  df-fz 12518  df-fl 12785  df-seq 12994  df-exp 13053  df-cj 14036  df-re 14037  df-im 14038  df-sqrt 14172  df-abs 14173  df-clim 14416  df-rlim 14417  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-plusg 16154  df-mulr 16155  df-starv 16156  df-tset 16160  df-ple 16161  df-ds 16164  df-unif 16165  df-rest 16283  df-topn 16284  df-topgen 16304  df-ordt 16361  df-ps 17399  df-tsr 17400  df-psmet 19938  df-xmet 19939  df-met 19940  df-bl 19941  df-mopn 19942  df-cnfld 19947  df-top 20899  df-topon 20916  df-topsp 20937  df-bases 20950  df-lm 21233  df-xms 22324  df-ms 22325  df-xlim 40546 This theorem is referenced by:  climxlim  40553  xlimclim2lem  40566
 Copyright terms: Public domain W3C validator