Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimmnfvlem1 Structured version   Visualization version   GIF version

Theorem xlimmnfvlem1 42120
Description: Lemma for xlimmnfv 42122: the "only if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimmnfvlem1.m (𝜑𝑀 ∈ ℤ)
xlimmnfvlem1.z 𝑍 = (ℤ𝑀)
xlimmnfvlem1.f (𝜑𝐹:𝑍⟶ℝ*)
xlimmnfvlem1.c (𝜑𝐹~~>*-∞)
xlimmnfvlem1.x (𝜑𝑋 ∈ ℝ)
Assertion
Ref Expression
xlimmnfvlem1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋)
Distinct variable groups:   𝑗,𝐹,𝑘   𝑗,𝑀   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗,𝑘
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem xlimmnfvlem1
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 icomnfordt 21826 . . . . . 6 (-∞[,)𝑋) ∈ (ordTop‘ ≤ )
21a1i 11 . . . . 5 (𝜑 → (-∞[,)𝑋) ∈ (ordTop‘ ≤ ))
3 xlimmnfvlem1.c . . . . . . . 8 (𝜑𝐹~~>*-∞)
4 df-xlim 42107 . . . . . . . . 9 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
54breqi 5074 . . . . . . . 8 (𝐹~~>*-∞ ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞)
63, 5sylib 220 . . . . . . 7 (𝜑𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞)
7 nfcv 2979 . . . . . . . 8 𝑘𝐹
8 letopon 21815 . . . . . . . . 9 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
98a1i 11 . . . . . . . 8 (𝜑 → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
107, 9lmbr3 42035 . . . . . . 7 (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞ ↔ (𝐹 ∈ (ℝ*pm ℂ) ∧ -∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
116, 10mpbid 234 . . . . . 6 (𝜑 → (𝐹 ∈ (ℝ*pm ℂ) ∧ -∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
1211simp3d 1140 . . . . 5 (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
132, 12jca 514 . . . 4 (𝜑 → ((-∞[,)𝑋) ∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
1411simp2d 1139 . . . . 5 (𝜑 → -∞ ∈ ℝ*)
15 xlimmnfvlem1.x . . . . . 6 (𝜑𝑋 ∈ ℝ)
1615rexrd 10693 . . . . 5 (𝜑𝑋 ∈ ℝ*)
1715mnfltd 12522 . . . . 5 (𝜑 → -∞ < 𝑋)
18 lbico1 12794 . . . . 5 ((-∞ ∈ ℝ*𝑋 ∈ ℝ* ∧ -∞ < 𝑋) → -∞ ∈ (-∞[,)𝑋))
1914, 16, 17, 18syl3anc 1367 . . . 4 (𝜑 → -∞ ∈ (-∞[,)𝑋))
20 eleq2 2903 . . . . . 6 (𝑢 = (-∞[,)𝑋) → (-∞ ∈ 𝑢 ↔ -∞ ∈ (-∞[,)𝑋)))
21 eleq2 2903 . . . . . . . . 9 (𝑢 = (-∞[,)𝑋) → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ (-∞[,)𝑋)))
2221anbi2d 630 . . . . . . . 8 (𝑢 = (-∞[,)𝑋) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))))
2322ralbidv 3199 . . . . . . 7 (𝑢 = (-∞[,)𝑋) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))))
2423rexbidv 3299 . . . . . 6 (𝑢 = (-∞[,)𝑋) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))))
2520, 24imbi12d 347 . . . . 5 (𝑢 = (-∞[,)𝑋) → ((-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) ↔ (-∞ ∈ (-∞[,)𝑋) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)))))
2625rspcva 3623 . . . 4 (((-∞[,)𝑋) ∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → (-∞ ∈ (-∞[,)𝑋) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))))
2713, 19, 26sylc 65 . . 3 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)))
28 nfv 1915 . . . 4 𝑗𝜑
29 nfv 1915 . . . . . 6 𝑘𝜑
30 xlimmnfvlem1.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℝ*)
3130ffdmd 6539 . . . . . . . . . . 11 (𝜑𝐹:dom 𝐹⟶ℝ*)
3231ffvelrnda 6853 . . . . . . . . . 10 ((𝜑𝑘 ∈ dom 𝐹) → (𝐹𝑘) ∈ ℝ*)
3332adantrr 715 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → (𝐹𝑘) ∈ ℝ*)
3416adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → 𝑋 ∈ ℝ*)
3514adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → -∞ ∈ ℝ*)
36 simprr 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → (𝐹𝑘) ∈ (-∞[,)𝑋))
3735, 34, 36icoltubd 41828 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → (𝐹𝑘) < 𝑋)
3833, 34, 37xrltled 12546 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → (𝐹𝑘) ≤ 𝑋)
3938ex 415 . . . . . . 7 (𝜑 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)) → (𝐹𝑘) ≤ 𝑋))
4039adantr 483 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)) → (𝐹𝑘) ≤ 𝑋))
4129, 40ralimda 41413 . . . . 5 (𝜑 → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋))
4241a1d 25 . . . 4 (𝜑 → (𝑗 ∈ ℤ → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋)))
4328, 42reximdai 3313 . . 3 (𝜑 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋))
4427, 43mpd 15 . 2 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋)
45 xlimmnfvlem1.m . . 3 (𝜑𝑀 ∈ ℤ)
46 xlimmnfvlem1.z . . . 4 𝑍 = (ℤ𝑀)
4746rexuz3 14710 . . 3 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋))
4845, 47syl 17 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋))
4944, 48mpbird 259 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wrex 3141   class class class wbr 5068  dom cdm 5557  wf 6353  cfv 6357  (class class class)co 7158  pm cpm 8409  cc 10537  cr 10538  -∞cmnf 10675  *cxr 10676   < clt 10677  cle 10678  cz 11984  cuz 12246  [,)cico 12743  ordTopcordt 16774  TopOnctopon 21520  𝑡clm 21836  ~~>*clsxlim 42106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fi 8877  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-z 11985  df-uz 12247  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-topgen 16719  df-ordt 16776  df-ps 17812  df-tsr 17813  df-top 21504  df-topon 21521  df-bases 21556  df-lm 21839  df-xlim 42107
This theorem is referenced by:  xlimmnfv  42122
  Copyright terms: Public domain W3C validator