Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimmnfvlem2 Structured version   Visualization version   GIF version

Theorem xlimmnfvlem2 41990
Description: Lemma for xlimmnf 41998: the "if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimmnfvlem2.k 𝑘𝜑
xlimmnfvlem2.j 𝑗𝜑
xlimmnfvlem2.m (𝜑𝑀 ∈ ℤ)
xlimmnfvlem2.z 𝑍 = (ℤ𝑀)
xlimmnfvlem2.f (𝜑𝐹:𝑍⟶ℝ*)
xlimmnfvlem2.g (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
Assertion
Ref Expression
xlimmnfvlem2 (𝜑𝐹~~>*-∞)
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝑀(𝑥,𝑘)   𝑍(𝑥)

Proof of Theorem xlimmnfvlem2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 letopon 21741 . . . . . . 7 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
21a1i 11 . . . . . 6 (𝜑 → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
32elfvexd 6697 . . . . 5 (𝜑 → ℝ* ∈ V)
4 cnex 10606 . . . . . 6 ℂ ∈ V
54a1i 11 . . . . 5 (𝜑 → ℂ ∈ V)
6 xlimmnfvlem2.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
7 xlimmnfvlem2.z . . . . . . 7 𝑍 = (ℤ𝑀)
87uzsscn2 41630 . . . . . 6 𝑍 ⊆ ℂ
98a1i 11 . . . . 5 (𝜑𝑍 ⊆ ℂ)
10 elpm2r 8413 . . . . 5 (((ℝ* ∈ V ∧ ℂ ∈ V) ∧ (𝐹:𝑍⟶ℝ*𝑍 ⊆ ℂ)) → 𝐹 ∈ (ℝ*pm ℂ))
113, 5, 6, 9, 10syl22anc 834 . . . 4 (𝜑𝐹 ∈ (ℝ*pm ℂ))
12 mnfxr 10686 . . . . 5 -∞ ∈ ℝ*
1312a1i 11 . . . 4 (𝜑 → -∞ ∈ ℝ*)
14 mnfnei 21757 . . . . . . . 8 ((𝑢 ∈ (ordTop‘ ≤ ) ∧ -∞ ∈ 𝑢) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝑢)
1514adantll 710 . . . . . . 7 (((𝜑𝑢 ∈ (ordTop‘ ≤ )) ∧ -∞ ∈ 𝑢) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝑢)
16 xlimmnfvlem2.j . . . . . . . . . . . . 13 𝑗𝜑
17 nfv 1906 . . . . . . . . . . . . 13 𝑗 𝑥 ∈ ℝ
1816, 17nfan 1891 . . . . . . . . . . . 12 𝑗(𝜑𝑥 ∈ ℝ)
19 nfv 1906 . . . . . . . . . . . 12 𝑗(-∞[,)𝑥) ⊆ 𝑢
2018, 19nfan 1891 . . . . . . . . . . 11 𝑗((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢)
21 simprr 769 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
22 xlimmnfvlem2.k . . . . . . . . . . . . . . . . . 18 𝑘𝜑
23 nfv 1906 . . . . . . . . . . . . . . . . . 18 𝑘 𝑥 ∈ ℝ
2422, 23nfan 1891 . . . . . . . . . . . . . . . . 17 𝑘(𝜑𝑥 ∈ ℝ)
25 nfv 1906 . . . . . . . . . . . . . . . . 17 𝑘(-∞[,)𝑥) ⊆ 𝑢
2624, 25nfan 1891 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢)
27 nfv 1906 . . . . . . . . . . . . . . . 16 𝑘 𝑗𝑍
2826, 27nfan 1891 . . . . . . . . . . . . . . 15 𝑘(((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍)
297uztrn2 12250 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
30293adant1 1122 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
316fdmd 6516 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom 𝐹 = 𝑍)
32313ad2ant1 1125 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → dom 𝐹 = 𝑍)
3330, 32eleqtrrd 2913 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
3433ad5ant134 1359 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑘 ∈ dom 𝐹)
3534adantl4r 751 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑘 ∈ dom 𝐹)
36 simp-4r 780 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (-∞[,)𝑥) ⊆ 𝑢)
3736adantl4r 751 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (-∞[,)𝑥) ⊆ 𝑢)
3812a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → -∞ ∈ ℝ*)
39 simp-4r 780 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑥 ∈ ℝ)
40 rexr 10675 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
4139, 40syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑥 ∈ ℝ*)
42 simp-4l 779 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝜑)
4329ad4ant23 749 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑘𝑍)
446ffvelrnda 6843 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
4542, 43, 44syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) ∈ ℝ*)
4645mnfled 41536 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → -∞ ≤ (𝐹𝑘))
47 simpr 485 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) < 𝑥)
4838, 41, 45, 46, 47elicod 12775 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) ∈ (-∞[,)𝑥))
4948adantl3r 746 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) ∈ (-∞[,)𝑥))
5037, 49sseldd 3965 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) ∈ 𝑢)
5135, 50jca 512 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
5251ex 413 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) < 𝑥 → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
5328, 52ralimda 41282 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
5453adantrr 713 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
5521, 54mpd 15 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
56553impb 1107 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
57 xlimmnfvlem2.g . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
5857r19.21bi 3205 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
5958adantr 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
6020, 56, 59reximdd 41297 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
61 xlimmnfvlem2.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
627rexuz3 14696 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6361, 62syl 17 . . . . . . . . . . 11 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6463ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6560, 64mpbid 233 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
6665rexlimdva2 3284 . . . . . . . 8 (𝜑 → (∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6766ad2antrr 722 . . . . . . 7 (((𝜑𝑢 ∈ (ordTop‘ ≤ )) ∧ -∞ ∈ 𝑢) → (∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6815, 67mpd 15 . . . . . 6 (((𝜑𝑢 ∈ (ordTop‘ ≤ )) ∧ -∞ ∈ 𝑢) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
6968ex 413 . . . . 5 ((𝜑𝑢 ∈ (ordTop‘ ≤ )) → (-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
7069ralrimiva 3179 . . . 4 (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
7111, 13, 703jca 1120 . . 3 (𝜑 → (𝐹 ∈ (ℝ*pm ℂ) ∧ -∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
72 nfcv 2974 . . . 4 𝑘𝐹
7372, 2lmbr3 41904 . . 3 (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞ ↔ (𝐹 ∈ (ℝ*pm ℂ) ∧ -∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
7471, 73mpbird 258 . 2 (𝜑𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞)
75 df-xlim 41976 . . . 4 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
7675breqi 5063 . . 3 (𝐹~~>*-∞ ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞)
7776a1i 11 . 2 (𝜑 → (𝐹~~>*-∞ ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞))
7874, 77mpbird 258 1 (𝜑𝐹~~>*-∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wnf 1775  wcel 2105  wral 3135  wrex 3136  Vcvv 3492  wss 3933   class class class wbr 5057  dom cdm 5548  wf 6344  cfv 6348  (class class class)co 7145  pm cpm 8396  cc 10523  cr 10524  -∞cmnf 10661  *cxr 10662   < clt 10663  cle 10664  cz 11969  cuz 12231  [,)cico 12728  ordTopcordt 16760  TopOnctopon 21446  𝑡clm 21762  ~~>*clsxlim 41975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fi 8863  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-z 11970  df-uz 12232  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-topgen 16705  df-ordt 16762  df-ps 17798  df-tsr 17799  df-top 21430  df-topon 21447  df-bases 21482  df-lm 21765  df-xlim 41976
This theorem is referenced by:  xlimmnfv  41991
  Copyright terms: Public domain W3C validator