Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfmpt Structured version   Visualization version   GIF version

Theorem xlimpnfmpt 42117
Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimpnfmpt.k 𝑘𝜑
xlimpnfmpt.m (𝜑𝑀 ∈ ℤ)
xlimpnfmpt.z 𝑍 = (ℤ𝑀)
xlimpnfmpt.b ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ*)
xlimpnfmpt.f 𝐹 = (𝑘𝑍𝐵)
Assertion
Ref Expression
xlimpnfmpt (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵))
Distinct variable groups:   𝐵,𝑗,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐵(𝑘)   𝐹(𝑥,𝑗,𝑘)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem xlimpnfmpt
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xlimpnfmpt.f . . . 4 𝐹 = (𝑘𝑍𝐵)
2 nfmpt1 5157 . . . 4 𝑘(𝑘𝑍𝐵)
31, 2nfcxfr 2975 . . 3 𝑘𝐹
4 xlimpnfmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
5 xlimpnfmpt.z . . 3 𝑍 = (ℤ𝑀)
6 xlimpnfmpt.k . . . 4 𝑘𝜑
7 xlimpnfmpt.b . . . 4 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ*)
86, 7, 1fmptdf 6876 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
93, 4, 5, 8xlimpnf 42115 . 2 (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑘)))
10 nfv 1911 . . . . . 6 𝑘 𝑖𝑍
116, 10nfan 1896 . . . . 5 𝑘(𝜑𝑖𝑍)
125uztrn2 12256 . . . . . . . 8 ((𝑖𝑍𝑘 ∈ (ℤ𝑖)) → 𝑘𝑍)
1312adantll 712 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝑘𝑍)
14 simpll 765 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝜑)
1514, 13, 7syl2anc 586 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝐵 ∈ ℝ*)
161fvmpt2 6774 . . . . . . 7 ((𝑘𝑍𝐵 ∈ ℝ*) → (𝐹𝑘) = 𝐵)
1713, 15, 16syl2anc 586 . . . . . 6 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (𝐹𝑘) = 𝐵)
1817breq2d 5071 . . . . 5 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (𝑦 ≤ (𝐹𝑘) ↔ 𝑦𝐵))
1911, 18ralbida 3230 . . . 4 ((𝜑𝑖𝑍) → (∀𝑘 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑘) ↔ ∀𝑘 ∈ (ℤ𝑖)𝑦𝐵))
2019rexbidva 3296 . . 3 (𝜑 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑘) ↔ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵))
2120ralbidv 3197 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑘) ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵))
22 breq1 5062 . . . . . 6 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
2322rexralbidv 3301 . . . . 5 (𝑦 = 𝑥 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑥𝐵))
24 fveq2 6665 . . . . . . 7 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
2524raleqdv 3416 . . . . . 6 (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ𝑖)𝑥𝐵 ↔ ∀𝑘 ∈ (ℤ𝑗)𝑥𝐵))
2625cbvrexvw 3451 . . . . 5 (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑥𝐵 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵)
2723, 26syl6bb 289 . . . 4 (𝑦 = 𝑥 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵))
2827cbvralvw 3450 . . 3 (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵)
2928a1i 11 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵))
309, 21, 293bitrd 307 1 (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wnf 1780  wcel 2110  wral 3138  wrex 3139   class class class wbr 5059  cmpt 5139  cfv 6350  cr 10530  +∞cpnf 10666  *cxr 10668  cle 10670  cz 11975  cuz 12237  ~~>*clsxlim 42091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-z 11976  df-uz 12238  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-topgen 16711  df-ordt 16768  df-ps 17804  df-tsr 17805  df-top 21496  df-topon 21513  df-bases 21548  df-lm 21831  df-xlim 42092
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator