Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfv Structured version   Visualization version   GIF version

Theorem xlimpnfv 41995
Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimpnfv.m (𝜑𝑀 ∈ ℤ)
xlimpnfv.z 𝑍 = (ℤ𝑀)
xlimpnfv.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
xlimpnfv (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝑀(𝑥,𝑘)

Proof of Theorem xlimpnfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xlimpnfv.m . . . . 5 (𝜑𝑀 ∈ ℤ)
21ad2antrr 722 . . . 4 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℤ)
3 xlimpnfv.z . . . 4 𝑍 = (ℤ𝑀)
4 xlimpnfv.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
54ad2antrr 722 . . . 4 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
6 simplr 765 . . . 4 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → 𝐹~~>*+∞)
7 simpr 485 . . . 4 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
82, 3, 5, 6, 7xlimpnfvlem1 41993 . . 3 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
98ralrimiva 3179 . 2 ((𝜑𝐹~~>*+∞) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
10 nfv 1906 . . . 4 𝑘𝜑
11 nfcv 2974 . . . . 5 𝑘
12 nfcv 2974 . . . . . 6 𝑘𝑍
13 nfra1 3216 . . . . . 6 𝑘𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
1412, 13nfrex 3306 . . . . 5 𝑘𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
1511, 14nfralw 3222 . . . 4 𝑘𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
1610, 15nfan 1891 . . 3 𝑘(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
17 nfv 1906 . . . 4 𝑗𝜑
18 nfcv 2974 . . . . 5 𝑗
19 nfre1 3303 . . . . 5 𝑗𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
2018, 19nfralw 3222 . . . 4 𝑗𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
2117, 20nfan 1891 . . 3 𝑗(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
221adantr 481 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → 𝑀 ∈ ℤ)
234adantr 481 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → 𝐹:𝑍⟶ℝ*)
24 nfv 1906 . . . . . 6 𝑗 𝑦 ∈ ℝ
2521, 24nfan 1891 . . . . 5 𝑗((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ)
26 simp-4r 780 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → 𝑦 ∈ ℝ)
27 rexr 10675 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
2826, 27syl 17 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → 𝑦 ∈ ℝ*)
29 peano2re 10801 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
3029rexrd 10679 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ*)
3126, 30syl 17 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → (𝑦 + 1) ∈ ℝ*)
3243ad2ant1 1125 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍⟶ℝ*)
333uztrn2 12250 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
34333adant1 1122 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
3532, 34ffvelrnd 6844 . . . . . . . . . . . 12 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
3635ad5ant134 1359 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → (𝐹𝑘) ∈ ℝ*)
3726ltp1d 11558 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → 𝑦 < (𝑦 + 1))
38 simpr 485 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → (𝑦 + 1) ≤ (𝐹𝑘))
3928, 31, 36, 37, 38xrltletrd 12542 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → 𝑦 < (𝐹𝑘))
4039ex 413 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑦 + 1) ≤ (𝐹𝑘) → 𝑦 < (𝐹𝑘)))
4140ralimdva 3174 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘) → ∀𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘)))
4241imp 407 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)) → ∀𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
4342adantl3r 746 . . . . . 6 (((((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)) → ∀𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
44433impa 1102 . . . . 5 ((((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ) ∧ 𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)) → ∀𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
4529adantl 482 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ∧ 𝑦 ∈ ℝ) → (𝑦 + 1) ∈ ℝ)
46 simpl 483 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ∧ 𝑦 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
47 breq1 5060 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝑥 ≤ (𝐹𝑘) ↔ (𝑦 + 1) ≤ (𝐹𝑘)))
4847ralbidv 3194 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (∀𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)))
4948rexbidv 3294 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)))
5049rspcva 3618 . . . . . . 7 (((𝑦 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘))
5145, 46, 50syl2anc 584 . . . . . 6 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ∧ 𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘))
5251adantll 710 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘))
5325, 44, 52reximdd 41297 . . . 4 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
5453ralrimiva 3179 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → ∀𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
5516, 21, 22, 3, 23, 54xlimpnfvlem2 41994 . 2 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → 𝐹~~>*+∞)
569, 55impbida 797 1 (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  wrex 3136   class class class wbr 5057  wf 6344  cfv 6348  (class class class)co 7145  cr 10524  1c1 10526   + caddc 10528  +∞cpnf 10660  *cxr 10662   < clt 10663  cle 10664  cz 11969  cuz 12231  ~~>*clsxlim 41975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fi 8863  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-z 11970  df-uz 12232  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-topgen 16705  df-ordt 16762  df-ps 17798  df-tsr 17799  df-top 21430  df-topon 21447  df-bases 21482  df-lm 21765  df-xlim 41976
This theorem is referenced by:  xlimpnf  41999  xlimpnfliminf  42017  xlimpnfliminf2  42018
  Copyright terms: Public domain W3C validator