Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimxrre Structured version   Visualization version   GIF version

Theorem xlimxrre 41988
Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis 𝐹 ∈ dom ⇝ is probably not enough, since in principle we could have +∞ ∈ ℂ and -∞ ∈ ℂ). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimxrre.m (𝜑𝑀 ∈ ℤ)
xlimxrre.z 𝑍 = (ℤ𝑀)
xlimxrre.f (𝜑𝐹:𝑍⟶ℝ*)
xlimxrre.a (𝜑𝐴 ∈ ℝ)
xlimxrre.c (𝜑𝐹~~>*𝐴)
Assertion
Ref Expression
xlimxrre (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹   𝑗,𝑀   𝑗,𝑍   𝜑,𝑗

Proof of Theorem xlimxrre
Dummy variables 𝑘 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elioore 12756 . . . . . . 7 ((𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → (𝐹𝑘) ∈ ℝ)
21anim2i 616 . . . . . 6 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
32ralimi 3157 . . . . 5 (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
43adantl 482 . . . 4 ((𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
5 xlimxrre.f . . . . . . 7 (𝜑𝐹:𝑍⟶ℝ*)
65ffund 6511 . . . . . 6 (𝜑 → Fun 𝐹)
7 ffvresb 6880 . . . . . 6 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
86, 7syl 17 . . . . 5 (𝜑 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
98adantr 481 . . . 4 ((𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
104, 9mpbird 258 . . 3 ((𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
1110adantrl 712 . 2 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
12 xlimxrre.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
13 peano2rem 10941 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
1412, 13syl 17 . . . . 5 (𝜑 → (𝐴 − 1) ∈ ℝ)
1514rexrd 10679 . . . 4 (𝜑 → (𝐴 − 1) ∈ ℝ*)
16 peano2re 10801 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
1712, 16syl 17 . . . . 5 (𝜑 → (𝐴 + 1) ∈ ℝ)
1817rexrd 10679 . . . 4 (𝜑 → (𝐴 + 1) ∈ ℝ*)
1912ltm1d 11560 . . . 4 (𝜑 → (𝐴 − 1) < 𝐴)
2012ltp1d 11558 . . . 4 (𝜑𝐴 < (𝐴 + 1))
2115, 18, 12, 19, 20eliood 41649 . . 3 (𝜑𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)))
22 iooordt 21753 . . . 4 ((𝐴 − 1)(,)(𝐴 + 1)) ∈ (ordTop‘ ≤ )
23 xlimxrre.c . . . . . 6 (𝜑𝐹~~>*𝐴)
24 nfcv 2974 . . . . . . 7 𝑘𝐹
25 xlimxrre.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
26 xlimxrre.z . . . . . . 7 𝑍 = (ℤ𝑀)
27 eqid 2818 . . . . . . 7 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
2824, 25, 26, 5, 27xlimbr 41984 . . . . . 6 (𝜑 → (𝐹~~>*𝐴 ↔ (𝐴 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
2923, 28mpbid 233 . . . . 5 (𝜑 → (𝐴 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
3029simprd 496 . . . 4 (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
31 eleq2 2898 . . . . . 6 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → (𝐴𝑢𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1))))
32 eleq2 2898 . . . . . . . 8 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))
3332anbi2d 628 . . . . . . 7 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))
3433rexralbidv 3298 . . . . . 6 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))
3531, 34imbi12d 346 . . . . 5 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) ↔ (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))))
3635rspcva 3618 . . . 4 ((((𝐴 − 1)(,)(𝐴 + 1)) ∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))
3722, 30, 36sylancr 587 . . 3 (𝜑 → (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))
3821, 37mpd 15 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))
3911, 38reximddv 3272 1 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  wrex 3136   class class class wbr 5057  dom cdm 5548  cres 5550  Fun wfun 6342  wf 6344  cfv 6348  (class class class)co 7145  cr 10524  1c1 10526   + caddc 10528  *cxr 10662  cle 10664  cmin 10858  cz 11969  cuz 12231  (,)cioo 12726  ordTopcordt 16760  ~~>*clsxlim 41975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fi 8863  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-topgen 16705  df-ordt 16762  df-ps 17798  df-tsr 17799  df-top 21430  df-topon 21447  df-bases 21482  df-lm 21765  df-xlim 41976
This theorem is referenced by:  xlimclim2  41997  xlimliminflimsup  42019
  Copyright terms: Public domain W3C validator