MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xlt2add Structured version   Visualization version   GIF version

Theorem xlt2add 12128
Description: Extended real version of lt2add 10551. Note that ltleadd 10549, which has weaker assumptions, is not true for the extended reals (since 0 + +∞ < 1 + +∞ fails). (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xlt2add (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴 < 𝐶𝐵 < 𝐷) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷)))

Proof of Theorem xlt2add
StepHypRef Expression
1 xaddcl 12108 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
213ad2ant1 1102 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
32adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
4 simp1l 1105 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐴 ∈ ℝ*)
5 simp2r 1108 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐷 ∈ ℝ*)
6 xaddcl 12108 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*) → (𝐴 +𝑒 𝐷) ∈ ℝ*)
74, 5, 6syl2anc 694 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐷) ∈ ℝ*)
87adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐷) ∈ ℝ*)
9 xaddcl 12108 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*) → (𝐶 +𝑒 𝐷) ∈ ℝ*)
1093ad2ant2 1103 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐶 +𝑒 𝐷) ∈ ℝ*)
1110adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 +𝑒 𝐷) ∈ ℝ*)
12 simp3r 1110 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐵 < 𝐷)
1312adantr 480 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 < 𝐷)
14 simp1r 1106 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐵 ∈ ℝ*)
1514adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 ∈ ℝ*)
165adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℝ*)
17 simprl 809 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℝ)
18 xltadd2 12125 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐷 ∈ ℝ*𝐴 ∈ ℝ) → (𝐵 < 𝐷 ↔ (𝐴 +𝑒 𝐵) < (𝐴 +𝑒 𝐷)))
1915, 16, 17, 18syl3anc 1366 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 < 𝐷 ↔ (𝐴 +𝑒 𝐵) < (𝐴 +𝑒 𝐷)))
2013, 19mpbid 222 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐵) < (𝐴 +𝑒 𝐷))
21 simp3l 1109 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐴 < 𝐶)
2221adantr 480 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 < 𝐶)
234adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℝ*)
24 simp2l 1107 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐶 ∈ ℝ*)
2524adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℝ*)
26 simprr 811 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℝ)
27 xltadd1 12124 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐷 ∈ ℝ) → (𝐴 < 𝐶 ↔ (𝐴 +𝑒 𝐷) < (𝐶 +𝑒 𝐷)))
2823, 25, 26, 27syl3anc 1366 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 < 𝐶 ↔ (𝐴 +𝑒 𝐷) < (𝐶 +𝑒 𝐷)))
2922, 28mpbid 222 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐷) < (𝐶 +𝑒 𝐷))
303, 8, 11, 20, 29xrlttrd 12028 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
3130anassrs 681 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) ∧ 𝐷 ∈ ℝ) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
32 pnfxr 10130 . . . . . . . . . . . 12 +∞ ∈ ℝ*
3332a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → +∞ ∈ ℝ*)
34 pnfge 12002 . . . . . . . . . . . 12 (𝐶 ∈ ℝ*𝐶 ≤ +∞)
3524, 34syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐶 ≤ +∞)
364, 24, 33, 21, 35xrltletrd 12030 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐴 < +∞)
37 nltpnft 12033 . . . . . . . . . . . 12 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
3837necon2abid 2865 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠ +∞))
394, 38syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 < +∞ ↔ 𝐴 ≠ +∞))
4036, 39mpbid 222 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐴 ≠ +∞)
41 pnfge 12002 . . . . . . . . . . . 12 (𝐷 ∈ ℝ*𝐷 ≤ +∞)
425, 41syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐷 ≤ +∞)
4314, 5, 33, 12, 42xrltletrd 12030 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐵 < +∞)
44 nltpnft 12033 . . . . . . . . . . . 12 (𝐵 ∈ ℝ* → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞))
4544necon2abid 2865 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝐵 < +∞ ↔ 𝐵 ≠ +∞))
4614, 45syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐵 < +∞ ↔ 𝐵 ≠ +∞))
4743, 46mpbid 222 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐵 ≠ +∞)
48 xaddnepnf 12106 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞)
494, 40, 14, 47, 48syl22anc 1367 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐵) ≠ +∞)
50 nltpnft 12033 . . . . . . . . . 10 ((𝐴 +𝑒 𝐵) ∈ ℝ* → ((𝐴 +𝑒 𝐵) = +∞ ↔ ¬ (𝐴 +𝑒 𝐵) < +∞))
5150necon2abid 2865 . . . . . . . . 9 ((𝐴 +𝑒 𝐵) ∈ ℝ* → ((𝐴 +𝑒 𝐵) < +∞ ↔ (𝐴 +𝑒 𝐵) ≠ +∞))
522, 51syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → ((𝐴 +𝑒 𝐵) < +∞ ↔ (𝐴 +𝑒 𝐵) ≠ +∞))
5349, 52mpbird 247 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐵) < +∞)
5453adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐷 = +∞) → (𝐴 +𝑒 𝐵) < +∞)
55 oveq2 6698 . . . . . . 7 (𝐷 = +∞ → (𝐶 +𝑒 𝐷) = (𝐶 +𝑒 +∞))
56 mnfxr 10134 . . . . . . . . . . 11 -∞ ∈ ℝ*
5756a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ ∈ ℝ*)
58 mnfle 12007 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
594, 58syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ ≤ 𝐴)
6057, 4, 24, 59, 21xrlelttrd 12029 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ < 𝐶)
61 ngtmnft 12035 . . . . . . . . . . 11 (𝐶 ∈ ℝ* → (𝐶 = -∞ ↔ ¬ -∞ < 𝐶))
6261necon2abid 2865 . . . . . . . . . 10 (𝐶 ∈ ℝ* → (-∞ < 𝐶𝐶 ≠ -∞))
6324, 62syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (-∞ < 𝐶𝐶 ≠ -∞))
6460, 63mpbid 222 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐶 ≠ -∞)
65 xaddpnf1 12095 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐶 ≠ -∞) → (𝐶 +𝑒 +∞) = +∞)
6624, 64, 65syl2anc 694 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐶 +𝑒 +∞) = +∞)
6755, 66sylan9eqr 2707 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐷 = +∞) → (𝐶 +𝑒 𝐷) = +∞)
6854, 67breqtrrd 4713 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐷 = +∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
6968adantlr 751 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) ∧ 𝐷 = +∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
70 mnfle 12007 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → -∞ ≤ 𝐵)
7114, 70syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ ≤ 𝐵)
7257, 14, 5, 71, 12xrlelttrd 12029 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ < 𝐷)
73 ngtmnft 12035 . . . . . . . . . . 11 (𝐷 ∈ ℝ* → (𝐷 = -∞ ↔ ¬ -∞ < 𝐷))
7473necon2abid 2865 . . . . . . . . . 10 (𝐷 ∈ ℝ* → (-∞ < 𝐷𝐷 ≠ -∞))
755, 74syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (-∞ < 𝐷𝐷 ≠ -∞))
7672, 75mpbid 222 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐷 ≠ -∞)
7776a1d 25 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (¬ (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷) → 𝐷 ≠ -∞))
7877necon4bd 2843 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐷 = -∞ → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷)))
7978imp 444 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐷 = -∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
8079adantlr 751 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) ∧ 𝐷 = -∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
81 elxr 11988 . . . . . 6 (𝐷 ∈ ℝ* ↔ (𝐷 ∈ ℝ ∨ 𝐷 = +∞ ∨ 𝐷 = -∞))
825, 81sylib 208 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐷 ∈ ℝ ∨ 𝐷 = +∞ ∨ 𝐷 = -∞))
8382adantr 480 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) → (𝐷 ∈ ℝ ∨ 𝐷 = +∞ ∨ 𝐷 = -∞))
8431, 69, 80, 83mpjao3dan 1435 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
8540a1d 25 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (¬ (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷) → 𝐴 ≠ +∞))
8685necon4bd 2843 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 = +∞ → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷)))
8786imp 444 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
88 oveq1 6697 . . . . 5 (𝐴 = -∞ → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵))
89 xaddmnf2 12098 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞)
9014, 47, 89syl2anc 694 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (-∞ +𝑒 𝐵) = -∞)
9188, 90sylan9eqr 2707 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐵) = -∞)
92 xaddnemnf 12105 . . . . . . 7 (((𝐶 ∈ ℝ*𝐶 ≠ -∞) ∧ (𝐷 ∈ ℝ*𝐷 ≠ -∞)) → (𝐶 +𝑒 𝐷) ≠ -∞)
9324, 64, 5, 76, 92syl22anc 1367 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐶 +𝑒 𝐷) ≠ -∞)
94 ngtmnft 12035 . . . . . . . 8 ((𝐶 +𝑒 𝐷) ∈ ℝ* → ((𝐶 +𝑒 𝐷) = -∞ ↔ ¬ -∞ < (𝐶 +𝑒 𝐷)))
9594necon2abid 2865 . . . . . . 7 ((𝐶 +𝑒 𝐷) ∈ ℝ* → (-∞ < (𝐶 +𝑒 𝐷) ↔ (𝐶 +𝑒 𝐷) ≠ -∞))
9610, 95syl 17 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (-∞ < (𝐶 +𝑒 𝐷) ↔ (𝐶 +𝑒 𝐷) ≠ -∞))
9793, 96mpbird 247 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ < (𝐶 +𝑒 𝐷))
9897adantr 480 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 = -∞) → -∞ < (𝐶 +𝑒 𝐷))
9991, 98eqbrtrd 4707 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
100 elxr 11988 . . . 4 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
1014, 100sylib 208 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
10284, 87, 99, 101mpjao3dan 1435 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
1031023expia 1286 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴 < 𝐶𝐵 < 𝐷) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3o 1053  w3a 1054   = wceq 1523  wcel 2030  wne 2823   class class class wbr 4685  (class class class)co 6690  cr 9973  +∞cpnf 10109  -∞cmnf 10110  *cxr 10111   < clt 10112  cle 10113   +𝑒 cxad 11982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-xneg 11984  df-xadd 11985
This theorem is referenced by:  bldisj  22250  iscau3  23122  xrofsup  29661  xrge0addgt0  29819
  Copyright terms: Public domain W3C validator