MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetge0 Structured version   Visualization version   GIF version

Theorem xmetge0 22370
Description: The distance function of a metric space is nonnegative. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmetge0 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))

Proof of Theorem xmetge0
StepHypRef Expression
1 simp1 1131 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2 simp2 1132 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
3 simp3 1133 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
4 xmettri2 22366 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐵𝑋)) → (𝐵𝐷𝐵) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐵)))
51, 2, 3, 3, 4syl13anc 1479 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐵) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐵)))
6 xmet0 22368 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋) → (𝐵𝐷𝐵) = 0)
763adant2 1126 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐵) = 0)
8 2re 11302 . . . . 5 2 ∈ ℝ
9 rexr 10297 . . . . 5 (2 ∈ ℝ → 2 ∈ ℝ*)
10 xmul01 12310 . . . . 5 (2 ∈ ℝ* → (2 ·e 0) = 0)
118, 9, 10mp2b 10 . . . 4 (2 ·e 0) = 0
127, 11syl6reqr 2813 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (2 ·e 0) = (𝐵𝐷𝐵))
13 xmetcl 22357 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
14 x2times 12342 . . . 4 ((𝐴𝐷𝐵) ∈ ℝ* → (2 ·e (𝐴𝐷𝐵)) = ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐵)))
1513, 14syl 17 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (2 ·e (𝐴𝐷𝐵)) = ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐵)))
165, 12, 153brtr4d 4836 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (2 ·e 0) ≤ (2 ·e (𝐴𝐷𝐵)))
17 0xr 10298 . . . 4 0 ∈ ℝ*
1817a1i 11 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ∈ ℝ*)
19 2rp 12050 . . . 4 2 ∈ ℝ+
2019a1i 11 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 2 ∈ ℝ+)
21 xlemul2 12334 . . 3 ((0 ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ* ∧ 2 ∈ ℝ+) → (0 ≤ (𝐴𝐷𝐵) ↔ (2 ·e 0) ≤ (2 ·e (𝐴𝐷𝐵))))
2218, 13, 20, 21syl3anc 1477 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (0 ≤ (𝐴𝐷𝐵) ↔ (2 ·e 0) ≤ (2 ·e (𝐴𝐷𝐵))))
2316, 22mpbird 247 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1072   = wceq 1632  wcel 2139   class class class wbr 4804  cfv 6049  (class class class)co 6814  cr 10147  0cc0 10148  *cxr 10285  cle 10287  2c2 11282  +crp 12045   +𝑒 cxad 12157   ·e cxmu 12158  ∞Metcxmt 19953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-2 11291  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-xmet 19961
This theorem is referenced by:  metge0  22371  xmetlecl  22372  xmetrtri  22381  xmetgt0  22384  prdsxmetlem  22394  imasdsf1olem  22399  xpsdsval  22407  xblpnf  22422  blgt0  22425  xblss2  22428  xbln0  22440  xmsge0  22489  comet  22539  stdbdxmet  22541  stdbdmet  22542  xrsmopn  22836  metdsf  22872  metdstri  22875  metdscnlem  22879  iscfil2  23284  heicant  33775
  Copyright terms: Public domain W3C validator