MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetrtri Structured version   Visualization version   GIF version

Theorem xmetrtri 22959
Description: One half of the reverse triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.)
Assertion
Ref Expression
xmetrtri ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵))

Proof of Theorem xmetrtri
StepHypRef Expression
1 3ancomb 1095 . . 3 ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ (𝐴𝑋𝐶𝑋𝐵𝑋))
2 xmettri 22955 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐶𝑋𝐵𝑋)) → (𝐴𝐷𝐶) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐵𝐷𝐶)))
31, 2sylan2b 595 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐶) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐵𝐷𝐶)))
4 xmetcl 22935 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ ℝ*)
543adant3r2 1179 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐶) ∈ ℝ*)
6 xmetcl 22935 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐷𝐶) ∈ ℝ*)
763adant3r1 1178 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐶) ∈ ℝ*)
8 xmetcl 22935 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
983adant3r3 1180 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ∈ ℝ*)
10 xmetge0 22948 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐶𝑋) → 0 ≤ (𝐴𝐷𝐶))
11103adant3r2 1179 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 0 ≤ (𝐴𝐷𝐶))
12 xmetge0 22948 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐶𝑋) → 0 ≤ (𝐵𝐷𝐶))
13123adant3r1 1178 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 0 ≤ (𝐵𝐷𝐶))
14 ge0nemnf 12560 . . . 4 (((𝐵𝐷𝐶) ∈ ℝ* ∧ 0 ≤ (𝐵𝐷𝐶)) → (𝐵𝐷𝐶) ≠ -∞)
157, 13, 14syl2anc 586 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐶) ≠ -∞)
16 xmetge0 22948 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
17163adant3r3 1180 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 0 ≤ (𝐴𝐷𝐵))
18 xlesubadd 12650 . . 3 ((((𝐴𝐷𝐶) ∈ ℝ* ∧ (𝐵𝐷𝐶) ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ*) ∧ (0 ≤ (𝐴𝐷𝐶) ∧ (𝐵𝐷𝐶) ≠ -∞ ∧ 0 ≤ (𝐴𝐷𝐵))) → (((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵) ↔ (𝐴𝐷𝐶) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐵𝐷𝐶))))
195, 7, 9, 11, 15, 17, 18syl33anc 1381 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵) ↔ (𝐴𝐷𝐶) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐵𝐷𝐶))))
203, 19mpbird 259 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2110  wne 3016   class class class wbr 5058  cfv 6349  (class class class)co 7150  0cc0 10531  -∞cmnf 10667  *cxr 10668  cle 10670  -𝑒cxne 12498   +𝑒 cxad 12499  ∞Metcxmet 20524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-2 11694  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-xmet 20532
This theorem is referenced by:  xmetrtri2  22960
  Copyright terms: Public domain W3C validator