MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetrtri2 Structured version   Visualization version   GIF version

Theorem xmetrtri2 22893
Description: The reverse triangle inequality for the distance function of an extended metric. In order to express the "extended absolute value function", we use the distance function xrsdsval 20517 defined on the extended real structure. (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
xmetrtri2.1 𝐾 = (dist‘ℝ*𝑠)
Assertion
Ref Expression
xmetrtri2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐶)𝐾(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵))

Proof of Theorem xmetrtri2
StepHypRef Expression
1 xmetcl 22868 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ ℝ*)
213adant3r2 1175 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐶) ∈ ℝ*)
3 xmetcl 22868 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐷𝐶) ∈ ℝ*)
433adant3r1 1174 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐶) ∈ ℝ*)
5 xmetrtri2.1 . . . 4 𝐾 = (dist‘ℝ*𝑠)
65xrsdsval 20517 . . 3 (((𝐴𝐷𝐶) ∈ ℝ* ∧ (𝐵𝐷𝐶) ∈ ℝ*) → ((𝐴𝐷𝐶)𝐾(𝐵𝐷𝐶)) = if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶))))
72, 4, 6syl2anc 584 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐶)𝐾(𝐵𝐷𝐶)) = if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶))))
8 3ancoma 1090 . . . . 5 ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ (𝐵𝑋𝐴𝑋𝐶𝑋))
9 xmetrtri 22892 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐵𝑋𝐴𝑋𝐶𝑋)) → ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)) ≤ (𝐵𝐷𝐴))
108, 9sylan2b 593 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)) ≤ (𝐵𝐷𝐴))
11 xmetsym 22884 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
12113adant3r3 1176 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
1310, 12breqtrrd 5085 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)) ≤ (𝐴𝐷𝐵))
14 xmetrtri 22892 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵))
15 breq1 5060 . . . 4 (((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)) = if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶))) → (((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)) ≤ (𝐴𝐷𝐵) ↔ if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵)))
16 breq1 5060 . . . 4 (((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) = if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶))) → (((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵) ↔ if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵)))
1715, 16ifboth 4501 . . 3 ((((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)) ≤ (𝐴𝐷𝐵) ∧ ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵)) → if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵))
1813, 14, 17syl2anc 584 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵))
197, 18eqbrtrd 5079 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐶)𝐾(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  ifcif 4463   class class class wbr 5057  cfv 6348  (class class class)co 7145  *cxr 10662  cle 10664  -𝑒cxne 12492   +𝑒 cxad 12493  distcds 16562  *𝑠cxrs 16761  ∞Metcxmet 20458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-fz 12881  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-plusg 16566  df-mulr 16567  df-tset 16572  df-ple 16573  df-ds 16575  df-xrs 16763  df-xmet 20466
This theorem is referenced by:  metrtri  22894  metdcnlem  23371
  Copyright terms: Public domain W3C validator