MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetunirn Structured version   Visualization version   GIF version

Theorem xmetunirn 22946
Description: Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
xmetunirn (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))

Proof of Theorem xmetunirn
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7188 . . . . . 6 (ℝ*m (𝑥 × 𝑥)) ∈ V
21rabex 5234 . . . . 5 {𝑑 ∈ (ℝ*m (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))} ∈ V
3 df-xmet 20537 . . . . 5 ∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*m (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
42, 3fnmpti 6490 . . . 4 ∞Met Fn V
5 fnunirn 7011 . . . 4 (∞Met Fn V → (𝐷 ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥)))
64, 5ax-mp 5 . . 3 (𝐷 ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥))
7 id 22 . . . . 5 (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘𝑥))
8 xmetdmdm 22944 . . . . . 6 (𝐷 ∈ (∞Met‘𝑥) → 𝑥 = dom dom 𝐷)
98fveq2d 6673 . . . . 5 (𝐷 ∈ (∞Met‘𝑥) → (∞Met‘𝑥) = (∞Met‘dom dom 𝐷))
107, 9eleqtrd 2915 . . . 4 (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
1110rexlimivw 3282 . . 3 (∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
126, 11sylbi 219 . 2 (𝐷 ran ∞Met → 𝐷 ∈ (∞Met‘dom dom 𝐷))
13 fvssunirn 6698 . . 3 (∞Met‘dom dom 𝐷) ⊆ ran ∞Met
1413sseli 3962 . 2 (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ran ∞Met)
1512, 14impbii 211 1 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  {crab 3142  Vcvv 3494   cuni 4837   class class class wbr 5065   × cxp 5552  dom cdm 5554  ran crn 5555   Fn wfn 6349  cfv 6354  (class class class)co 7155  m cmap 8405  0cc0 10536  *cxr 10673  cle 10675   +𝑒 cxad 12504  ∞Metcxmet 20529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-map 8407  df-xr 10678  df-xmet 20537
This theorem is referenced by:  isxms2  23057  setsmstopn  23087  tngtopn  23258  cfili  23870  cfilfcls  23876
  Copyright terms: Public domain W3C validator