Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmsusp Structured version   Visualization version   GIF version

Theorem xmsusp 22284
 Description: If the uniform set of a metric space is the uniform structure generated by its metric, then it is a uniform space. (Contributed by Thierry Arnoux, 14-Dec-2017.)
Hypotheses
Ref Expression
xmsusp.x 𝑋 = (Base‘𝐹)
xmsusp.d 𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋))
xmsusp.u 𝑈 = (UnifSt‘𝐹)
Assertion
Ref Expression
xmsusp ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ UnifSp)

Proof of Theorem xmsusp
StepHypRef Expression
1 simp3 1061 . . 3 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝑈 = (metUnif‘𝐷))
2 simp1 1059 . . . 4 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝑋 ≠ ∅)
3 xmsusp.x . . . . . 6 𝑋 = (Base‘𝐹)
4 xmsusp.d . . . . . 6 𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋))
53, 4xmsxmet 22171 . . . . 5 (𝐹 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋))
653ad2ant2 1081 . . . 4 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐷 ∈ (∞Met‘𝑋))
7 xmetpsmet 22063 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋))
8 metuust 22275 . . . . 5 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋))
97, 8sylan2 491 . . . 4 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋))
102, 6, 9syl2anc 692 . . 3 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋))
111, 10eqeltrd 2698 . 2 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝑈 ∈ (UnifOn‘𝑋))
12 xmetutop 22283 . . . 4 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (MetOpen‘𝐷))
132, 6, 12syl2anc 692 . . 3 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (unifTop‘(metUnif‘𝐷)) = (MetOpen‘𝐷))
141fveq2d 6152 . . 3 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (unifTop‘𝑈) = (unifTop‘(metUnif‘𝐷)))
15 eqid 2621 . . . . 5 (TopOpen‘𝐹) = (TopOpen‘𝐹)
1615, 3, 4xmstopn 22166 . . . 4 (𝐹 ∈ ∞MetSp → (TopOpen‘𝐹) = (MetOpen‘𝐷))
17163ad2ant2 1081 . . 3 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (TopOpen‘𝐹) = (MetOpen‘𝐷))
1813, 14, 173eqtr4rd 2666 . 2 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (TopOpen‘𝐹) = (unifTop‘𝑈))
19 xmsusp.u . . 3 𝑈 = (UnifSt‘𝐹)
203, 19, 15isusp 21975 . 2 (𝐹 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝑋) ∧ (TopOpen‘𝐹) = (unifTop‘𝑈)))
2111, 18, 20sylanbrc 697 1 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ UnifSp)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∅c0 3891   × cxp 5072   ↾ cres 5076  ‘cfv 5847  Basecbs 15781  distcds 15871  TopOpenctopn 16003  PsMetcpsmet 19649  ∞Metcxmt 19650  MetOpencmopn 19655  metUnifcmetu 19656  UnifOncust 21913  unifTopcutop 21944  UnifStcuss 21967  UnifSpcusp 21968  ∞MetSpcxme 22032 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ico 12123  df-topgen 16025  df-psmet 19657  df-xmet 19658  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-metu 19664  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-fil 21560  df-ust 21914  df-utop 21945  df-usp 21971  df-xms 22035 This theorem is referenced by:  cmetcusp1  23057
 Copyright terms: Public domain W3C validator