MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulneg1 Structured version   Visualization version   GIF version

Theorem xmulneg1 11928
Description: Extended real version of mulneg1 10317. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulneg1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 ·e 𝐵) = -𝑒(𝐴 ·e 𝐵))

Proof of Theorem xmulneg1
StepHypRef Expression
1 xneg0 11876 . . . . . . . . 9 -𝑒0 = 0
21eqeq2i 2621 . . . . . . . 8 (-𝑒𝐴 = -𝑒0 ↔ -𝑒𝐴 = 0)
3 0xr 9942 . . . . . . . . 9 0 ∈ ℝ*
4 xneg11 11879 . . . . . . . . 9 ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) → (-𝑒𝐴 = -𝑒0 ↔ 𝐴 = 0))
53, 4mpan2 702 . . . . . . . 8 (𝐴 ∈ ℝ* → (-𝑒𝐴 = -𝑒0 ↔ 𝐴 = 0))
62, 5syl5bbr 272 . . . . . . 7 (𝐴 ∈ ℝ* → (-𝑒𝐴 = 0 ↔ 𝐴 = 0))
76adantr 479 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 = 0 ↔ 𝐴 = 0))
87orbi1d 734 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((-𝑒𝐴 = 0 ∨ 𝐵 = 0) ↔ (𝐴 = 0 ∨ 𝐵 = 0)))
98ifbid 4057 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if((-𝑒𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ∨ ((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (-𝑒𝐴 · 𝐵)))) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ∨ ((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (-𝑒𝐴 · 𝐵)))))
10 xnegpnf 11873 . . . . . . . . . . . . . 14 -𝑒+∞ = -∞
1110eqeq2i 2621 . . . . . . . . . . . . 13 (-𝑒𝐴 = -𝑒+∞ ↔ -𝑒𝐴 = -∞)
12 simpll 785 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → 𝐴 ∈ ℝ*)
13 pnfxr 11781 . . . . . . . . . . . . . 14 +∞ ∈ ℝ*
14 xneg11 11879 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒𝐴 = -𝑒+∞ ↔ 𝐴 = +∞))
1512, 13, 14sylancl 692 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (-𝑒𝐴 = -𝑒+∞ ↔ 𝐴 = +∞))
1611, 15syl5bbr 272 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (-𝑒𝐴 = -∞ ↔ 𝐴 = +∞))
1716anbi2d 735 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ↔ (0 < 𝐵𝐴 = +∞)))
18 xnegmnf 11874 . . . . . . . . . . . . . 14 -𝑒-∞ = +∞
1918eqeq2i 2621 . . . . . . . . . . . . 13 (-𝑒𝐴 = -𝑒-∞ ↔ -𝑒𝐴 = +∞)
20 mnfxr 11783 . . . . . . . . . . . . . 14 -∞ ∈ ℝ*
21 xneg11 11879 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (-𝑒𝐴 = -𝑒-∞ ↔ 𝐴 = -∞))
2212, 20, 21sylancl 692 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (-𝑒𝐴 = -𝑒-∞ ↔ 𝐴 = -∞))
2319, 22syl5bbr 272 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (-𝑒𝐴 = +∞ ↔ 𝐴 = -∞))
2423anbi2d 735 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((𝐵 < 0 ∧ -𝑒𝐴 = +∞) ↔ (𝐵 < 0 ∧ 𝐴 = -∞)))
2517, 24orbi12d 741 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ↔ ((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞))))
26 xlt0neg1 11883 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ* → (𝐴 < 0 ↔ 0 < -𝑒𝐴))
2726ad2antrr 757 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (𝐴 < 0 ↔ 0 < -𝑒𝐴))
2827bicomd 211 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (0 < -𝑒𝐴𝐴 < 0))
2928anbi1d 736 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((0 < -𝑒𝐴𝐵 = -∞) ↔ (𝐴 < 0 ∧ 𝐵 = -∞)))
30 xlt0neg2 11884 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ* → (0 < 𝐴 ↔ -𝑒𝐴 < 0))
3130ad2antrr 757 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (0 < 𝐴 ↔ -𝑒𝐴 < 0))
3231bicomd 211 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (-𝑒𝐴 < 0 ↔ 0 < 𝐴))
3332anbi1d 736 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((-𝑒𝐴 < 0 ∧ 𝐵 = +∞) ↔ (0 < 𝐴𝐵 = +∞)))
3429, 33orbi12d 741 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞)) ↔ ((𝐴 < 0 ∧ 𝐵 = -∞) ∨ (0 < 𝐴𝐵 = +∞))))
35 orcom 400 . . . . . . . . . . 11 (((𝐴 < 0 ∧ 𝐵 = -∞) ∨ (0 < 𝐴𝐵 = +∞)) ↔ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))
3634, 35syl6bb 274 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞)) ↔ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))))
3725, 36orbi12d 741 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))) ↔ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))))
3837biimpar 500 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → (((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))))
3938iftrued 4043 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (-𝑒𝐴 · 𝐵)) = -∞)
40 xmullem2 11924 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))))
4140adantr 479 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))))
4223anbi2d 735 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ↔ (0 < 𝐵𝐴 = -∞)))
4316anbi2d 735 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((𝐵 < 0 ∧ -𝑒𝐴 = -∞) ↔ (𝐵 < 0 ∧ 𝐴 = +∞)))
4442, 43orbi12d 741 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ↔ ((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞))))
4528anbi1d 736 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((0 < -𝑒𝐴𝐵 = +∞) ↔ (𝐴 < 0 ∧ 𝐵 = +∞)))
4632anbi1d 736 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((-𝑒𝐴 < 0 ∧ 𝐵 = -∞) ↔ (0 < 𝐴𝐵 = -∞)))
4745, 46orbi12d 741 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞)) ↔ ((𝐴 < 0 ∧ 𝐵 = +∞) ∨ (0 < 𝐴𝐵 = -∞))))
48 orcom 400 . . . . . . . . . . . . 13 (((𝐴 < 0 ∧ 𝐵 = +∞) ∨ (0 < 𝐴𝐵 = -∞)) ↔ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))
4947, 48syl6bb 274 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞)) ↔ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))
5044, 49orbi12d 741 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ∨ ((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞))) ↔ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))))
5150notbid 306 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (¬ (((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ∨ ((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞))) ↔ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))))
5241, 51sylibrd 247 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ∨ ((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞)))))
5352imp 443 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → ¬ (((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ∨ ((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞))))
5453iffalsed 4046 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ∨ ((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (-𝑒𝐴 · 𝐵))) = if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (-𝑒𝐴 · 𝐵)))
55 iftrue 4041 . . . . . . . . . 10 ((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = +∞)
5655adantl 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = +∞)
57 xnegeq 11871 . . . . . . . . 9 (if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = +∞ → -𝑒if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = -𝑒+∞)
5856, 57syl 17 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → -𝑒if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = -𝑒+∞)
5958, 10syl6eq 2659 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → -𝑒if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = -∞)
6039, 54, 593eqtr4d 2653 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ∨ ((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (-𝑒𝐴 · 𝐵))) = -𝑒if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))
6150biimpar 500 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → (((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ∨ ((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞))))
6261iftrued 4043 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ∨ ((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (-𝑒𝐴 · 𝐵))) = +∞)
6341con2d 127 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) → ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))))
6463imp 443 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))))
6564iffalsed 4046 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))
66 iftrue 4041 . . . . . . . . . . . . 13 ((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) → if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)) = -∞)
6766adantl 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)) = -∞)
6865, 67eqtrd 2643 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = -∞)
69 xnegeq 11871 . . . . . . . . . . 11 (if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = -∞ → -𝑒if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = -𝑒-∞)
7068, 69syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → -𝑒if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = -𝑒-∞)
7170, 18syl6eq 2659 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → -𝑒if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = +∞)
7262, 71eqtr4d 2646 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ∨ ((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (-𝑒𝐴 · 𝐵))) = -𝑒if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))
7372adantlr 746 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ∨ ((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (-𝑒𝐴 · 𝐵))) = -𝑒if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))
7437notbid 306 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (¬ (((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))) ↔ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))))
7574biimpar 500 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → ¬ (((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))))
7675adantr 479 . . . . . . . . 9 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))))
7776iffalsed 4046 . . . . . . . 8 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (-𝑒𝐴 · 𝐵)) = (-𝑒𝐴 · 𝐵))
7851biimpar 500 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ∨ ((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞))))
7978adantlr 746 . . . . . . . . 9 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ∨ ((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞))))
8079iffalsed 4046 . . . . . . . 8 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ∨ ((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (-𝑒𝐴 · 𝐵))) = if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (-𝑒𝐴 · 𝐵)))
81 iffalse 4044 . . . . . . . . . . . 12 (¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))
8281ad2antlr 758 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))
83 iffalse 4044 . . . . . . . . . . . 12 (¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) → if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)) = (𝐴 · 𝐵))
8483adantl 480 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)) = (𝐴 · 𝐵))
8582, 84eqtrd 2643 . . . . . . . . . 10 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = (𝐴 · 𝐵))
86 xnegeq 11871 . . . . . . . . . 10 (if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = (𝐴 · 𝐵) → -𝑒if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = -𝑒(𝐴 · 𝐵))
8785, 86syl 17 . . . . . . . . 9 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → -𝑒if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = -𝑒(𝐴 · 𝐵))
88 xmullem 11923 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → 𝐴 ∈ ℝ)
8988recnd 9924 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → 𝐴 ∈ ℂ)
90 ancom 464 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ↔ (𝐵 ∈ ℝ*𝐴 ∈ ℝ*))
91 orcom 400 . . . . . . . . . . . . . . . 16 ((𝐴 = 0 ∨ 𝐵 = 0) ↔ (𝐵 = 0 ∨ 𝐴 = 0))
9291notbii 308 . . . . . . . . . . . . . . 15 (¬ (𝐴 = 0 ∨ 𝐵 = 0) ↔ ¬ (𝐵 = 0 ∨ 𝐴 = 0))
9390, 92anbi12i 728 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ↔ ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) ∧ ¬ (𝐵 = 0 ∨ 𝐴 = 0)))
94 orcom 400 . . . . . . . . . . . . . . 15 ((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ↔ (((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) ∨ ((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞))))
9594notbii 308 . . . . . . . . . . . . . 14 (¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ↔ ¬ (((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) ∨ ((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞))))
9693, 95anbi12i 728 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ↔ (((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) ∧ ¬ (𝐵 = 0 ∨ 𝐴 = 0)) ∧ ¬ (((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) ∨ ((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)))))
97 orcom 400 . . . . . . . . . . . . . 14 ((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) ↔ (((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)) ∨ ((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞))))
9897notbii 308 . . . . . . . . . . . . 13 (¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) ↔ ¬ (((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)) ∨ ((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞))))
99 xmullem 11923 . . . . . . . . . . . . 13 (((((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) ∧ ¬ (𝐵 = 0 ∨ 𝐴 = 0)) ∧ ¬ (((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) ∨ ((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)))) ∧ ¬ (((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)) ∨ ((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)))) → 𝐵 ∈ ℝ)
10096, 98, 99syl2anb 494 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → 𝐵 ∈ ℝ)
101100recnd 9924 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → 𝐵 ∈ ℂ)
10289, 101mulneg1d 10333 . . . . . . . . . 10 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵))
103 rexneg 11875 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
10488, 103syl 17 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → -𝑒𝐴 = -𝐴)
105104oveq1d 6542 . . . . . . . . . 10 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → (-𝑒𝐴 · 𝐵) = (-𝐴 · 𝐵))
10688, 100remulcld 9926 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → (𝐴 · 𝐵) ∈ ℝ)
107 rexneg 11875 . . . . . . . . . . 11 ((𝐴 · 𝐵) ∈ ℝ → -𝑒(𝐴 · 𝐵) = -(𝐴 · 𝐵))
108106, 107syl 17 . . . . . . . . . 10 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → -𝑒(𝐴 · 𝐵) = -(𝐴 · 𝐵))
109102, 105, 1083eqtr4d 2653 . . . . . . . . 9 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → (-𝑒𝐴 · 𝐵) = -𝑒(𝐴 · 𝐵))
11087, 109eqtr4d 2646 . . . . . . . 8 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → -𝑒if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = (-𝑒𝐴 · 𝐵))
11177, 80, 1103eqtr4d 2653 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ∨ ((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (-𝑒𝐴 · 𝐵))) = -𝑒if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))
11273, 111pm2.61dan 827 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ∨ ((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (-𝑒𝐴 · 𝐵))) = -𝑒if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))
11360, 112pm2.61dan 827 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ∨ ((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (-𝑒𝐴 · 𝐵))) = -𝑒if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))
114113ifeq2da 4066 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ∨ ((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (-𝑒𝐴 · 𝐵)))) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, -𝑒if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))))
1159, 114eqtrd 2643 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if((-𝑒𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ∨ ((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (-𝑒𝐴 · 𝐵)))) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, -𝑒if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))))
116 xnegeq 11871 . . . . 5 (if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = 0 → -𝑒if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = -𝑒0)
117116, 1syl6eq 2659 . . . 4 (if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = 0 → -𝑒if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = 0)
118 xnegeq 11871 . . . 4 (if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) → -𝑒if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = -𝑒if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))
119117, 118ifsb 4048 . . 3 -𝑒if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, -𝑒if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))
120115, 119syl6eqr 2661 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if((-𝑒𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ∨ ((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (-𝑒𝐴 · 𝐵)))) = -𝑒if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))))
121 xnegcl 11877 . . 3 (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
122 xmulval 11889 . . 3 ((-𝑒𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 ·e 𝐵) = if((-𝑒𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ∨ ((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (-𝑒𝐴 · 𝐵)))))
123121, 122sylan 486 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 ·e 𝐵) = if((-𝑒𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = -∞)) ∨ ((0 < -𝑒𝐴𝐵 = +∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧ -𝑒𝐴 = +∞)) ∨ ((0 < -𝑒𝐴𝐵 = -∞) ∨ (-𝑒𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (-𝑒𝐴 · 𝐵)))))
124 xmulval 11889 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))))
125 xnegeq 11871 . . 3 ((𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) → -𝑒(𝐴 ·e 𝐵) = -𝑒if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))))
126124, 125syl 17 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒(𝐴 ·e 𝐵) = -𝑒if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))))
127120, 123, 1263eqtr4d 2653 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 ·e 𝐵) = -𝑒(𝐴 ·e 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382   = wceq 1474  wcel 1976  ifcif 4035   class class class wbr 4577  (class class class)co 6527  cr 9791  0cc0 9792   · cmul 9797  +∞cpnf 9927  -∞cmnf 9928  *cxr 9929   < clt 9930  -cneg 10118  -𝑒cxne 11775   ·e cxmu 11777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-po 4949  df-so 4950  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-xneg 11778  df-xmul 11780
This theorem is referenced by:  xmulneg2  11929  xmulpnf1n  11937  xmulm1  11940  xmulass  11946  xadddi  11954  xadddi2  11956  xrsmulgzz  28815
  Copyright terms: Public domain W3C validator