Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulpnf1 Structured version   Visualization version   GIF version

Theorem xmulpnf1 12186
 Description: Multiplication by plus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulpnf1 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)

Proof of Theorem xmulpnf1
StepHypRef Expression
1 pnfxr 10173 . . . 4 +∞ ∈ ℝ*
2 xmulval 12138 . . . 4 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ·e +∞) = if((𝐴 = 0 ∨ +∞ = 0), 0, if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞)))))
31, 2mpan2 709 . . 3 (𝐴 ∈ ℝ* → (𝐴 ·e +∞) = if((𝐴 = 0 ∨ +∞ = 0), 0, if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞)))))
43adantr 472 . 2 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = if((𝐴 = 0 ∨ +∞ = 0), 0, if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞)))))
5 0xr 10167 . . . . . 6 0 ∈ ℝ*
6 xrltne 12076 . . . . . 6 ((0 ∈ ℝ*𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0)
75, 6mp3an1 1492 . . . . 5 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0)
8 0re 10121 . . . . . . 7 0 ∈ ℝ
9 renepnf 10168 . . . . . . 7 (0 ∈ ℝ → 0 ≠ +∞)
108, 9ax-mp 5 . . . . . 6 0 ≠ +∞
1110necomi 2918 . . . . 5 +∞ ≠ 0
127, 11jctir 562 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ≠ 0 ∧ +∞ ≠ 0))
13 neanior 2956 . . . 4 ((𝐴 ≠ 0 ∧ +∞ ≠ 0) ↔ ¬ (𝐴 = 0 ∨ +∞ = 0))
1412, 13sylib 208 . . 3 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ (𝐴 = 0 ∨ +∞ = 0))
1514iffalsed 4173 . 2 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → if((𝐴 = 0 ∨ +∞ = 0), 0, if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞)))) = if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞))))
16 simpr 479 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 0 < 𝐴)
17 eqid 2692 . . . . . 6 +∞ = +∞
1816, 17jctir 562 . . . . 5 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (0 < 𝐴 ∧ +∞ = +∞))
1918orcd 406 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞)))
2019olcd 407 . . 3 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))))
2120iftrued 4170 . 2 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞))) = +∞)
224, 15, 213eqtrd 2730 1 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 382   ∧ wa 383   = wceq 1564   ∈ wcel 2071   ≠ wne 2864  ifcif 4162   class class class wbr 4728  (class class class)co 6733  ℝcr 10016  0cc0 10017   · cmul 10022  +∞cpnf 10152  -∞cmnf 10153  ℝ*cxr 10154   < clt 10155   ·e cxmu 12027 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1818  ax-5 1920  ax-6 1986  ax-7 2022  ax-8 2073  ax-9 2080  ax-10 2100  ax-11 2115  ax-12 2128  ax-13 2323  ax-ext 2672  ax-sep 4857  ax-nul 4865  ax-pow 4916  ax-pr 4979  ax-un 7034  ax-cnex 10073  ax-resscn 10074  ax-1cn 10075  ax-icn 10076  ax-addcl 10077  ax-addrcl 10078  ax-mulcl 10079  ax-mulrcl 10080  ax-i2m1 10085  ax-1ne0 10086  ax-rnegex 10088  ax-rrecex 10089  ax-cnre 10090  ax-pre-lttri 10091  ax-pre-lttrn 10092 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1567  df-ex 1786  df-nf 1791  df-sb 1979  df-eu 2543  df-mo 2544  df-clab 2679  df-cleq 2685  df-clel 2688  df-nfc 2823  df-ne 2865  df-nel 2968  df-ral 2987  df-rex 2988  df-rab 2991  df-v 3274  df-sbc 3510  df-csb 3608  df-dif 3651  df-un 3653  df-in 3655  df-ss 3662  df-nul 3992  df-if 4163  df-pw 4236  df-sn 4254  df-pr 4256  df-op 4260  df-uni 4513  df-br 4729  df-opab 4789  df-mpt 4806  df-id 5096  df-po 5107  df-so 5108  df-xp 5192  df-rel 5193  df-cnv 5194  df-co 5195  df-dm 5196  df-rn 5197  df-res 5198  df-ima 5199  df-iota 5932  df-fun 5971  df-fn 5972  df-f 5973  df-f1 5974  df-fo 5975  df-f1o 5976  df-fv 5977  df-ov 6736  df-oprab 6737  df-mpt2 6738  df-er 7830  df-en 8041  df-dom 8042  df-sdom 8043  df-pnf 10157  df-mnf 10158  df-xr 10159  df-ltxr 10160  df-xmul 12030 This theorem is referenced by:  xmulpnf2  12187  xmulmnf1  12188  xmulpnf1n  12190  xmulgt0  12195  xmulasslem3  12198  xlemul1a  12200  xadddilem  12206  xdivpnfrp  29839  xrge0adddir  29890  esumcst  30323  esumpinfval  30333
 Copyright terms: Public domain W3C validator