MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnegneg Structured version   Visualization version   GIF version

Theorem xnegneg 12601
Description: Extended real version of negneg 10930. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegneg (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴)

Proof of Theorem xnegneg
StepHypRef Expression
1 elxr 12505 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 rexneg 12598 . . . . 5 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
3 xnegeq 12594 . . . . 5 (-𝑒𝐴 = -𝐴 → -𝑒-𝑒𝐴 = -𝑒-𝐴)
42, 3syl 17 . . . 4 (𝐴 ∈ ℝ → -𝑒-𝑒𝐴 = -𝑒-𝐴)
5 renegcl 10943 . . . . 5 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
6 rexneg 12598 . . . . 5 (-𝐴 ∈ ℝ → -𝑒-𝐴 = --𝐴)
75, 6syl 17 . . . 4 (𝐴 ∈ ℝ → -𝑒-𝐴 = --𝐴)
8 recn 10621 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
98negnegd 10982 . . . 4 (𝐴 ∈ ℝ → --𝐴 = 𝐴)
104, 7, 93eqtrd 2860 . . 3 (𝐴 ∈ ℝ → -𝑒-𝑒𝐴 = 𝐴)
11 xnegmnf 12597 . . . 4 -𝑒-∞ = +∞
12 xnegeq 12594 . . . . . 6 (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞)
13 xnegpnf 12596 . . . . . 6 -𝑒+∞ = -∞
1412, 13syl6eq 2872 . . . . 5 (𝐴 = +∞ → -𝑒𝐴 = -∞)
15 xnegeq 12594 . . . . 5 (-𝑒𝐴 = -∞ → -𝑒-𝑒𝐴 = -𝑒-∞)
1614, 15syl 17 . . . 4 (𝐴 = +∞ → -𝑒-𝑒𝐴 = -𝑒-∞)
17 id 22 . . . 4 (𝐴 = +∞ → 𝐴 = +∞)
1811, 16, 173eqtr4a 2882 . . 3 (𝐴 = +∞ → -𝑒-𝑒𝐴 = 𝐴)
19 xnegeq 12594 . . . . . 6 (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞)
2019, 11syl6eq 2872 . . . . 5 (𝐴 = -∞ → -𝑒𝐴 = +∞)
21 xnegeq 12594 . . . . 5 (-𝑒𝐴 = +∞ → -𝑒-𝑒𝐴 = -𝑒+∞)
2220, 21syl 17 . . . 4 (𝐴 = -∞ → -𝑒-𝑒𝐴 = -𝑒+∞)
23 id 22 . . . 4 (𝐴 = -∞ → 𝐴 = -∞)
2413, 22, 233eqtr4a 2882 . . 3 (𝐴 = -∞ → -𝑒-𝑒𝐴 = 𝐴)
2510, 18, 243jaoi 1423 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → -𝑒-𝑒𝐴 = 𝐴)
261, 25sylbi 219 1 (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1082   = wceq 1533  wcel 2110  cr 10530  +∞cpnf 10666  -∞cmnf 10667  *cxr 10668  -cneg 10865  -𝑒cxne 12498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-sub 10866  df-neg 10867  df-xneg 12501
This theorem is referenced by:  xneg11  12602  xltneg  12604  xnegdi  12635  xnpcan  12639  xposdif  12649  xrsxmet  23411  xrhmeo  23544  xaddeq0  30471  xrge0npcan  30676  carsgclctunlem2  31572  xnegnegi  41706  xnegnegd  41709  xnegrecl2  41729  supminfxr2  41738  supminfxrrnmpt  41740  xlenegcon1  41756  xlenegcon2  41757
  Copyright terms: Public domain W3C validator