MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcan2 Structured version   Visualization version   GIF version

Theorem xpcan2 5606
Description: Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011.)
Assertion
Ref Expression
xpcan2 (𝐶 ≠ ∅ → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem xpcan2
StepHypRef Expression
1 xp11 5604 . . 3 ((𝐴 ≠ ∅ ∧ 𝐶 ≠ ∅) → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ (𝐴 = 𝐵𝐶 = 𝐶)))
2 eqid 2651 . . . 4 𝐶 = 𝐶
32biantru 525 . . 3 (𝐴 = 𝐵 ↔ (𝐴 = 𝐵𝐶 = 𝐶))
41, 3syl6bbr 278 . 2 ((𝐴 ≠ ∅ ∧ 𝐶 ≠ ∅) → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵))
5 nne 2827 . . 3 𝐴 ≠ ∅ ↔ 𝐴 = ∅)
6 simpl 472 . . . . 5 ((𝐴 = ∅ ∧ 𝐶 ≠ ∅) → 𝐴 = ∅)
7 xpeq1 5157 . . . . . . . . . 10 (𝐴 = ∅ → (𝐴 × 𝐶) = (∅ × 𝐶))
8 0xp 5233 . . . . . . . . . 10 (∅ × 𝐶) = ∅
97, 8syl6eq 2701 . . . . . . . . 9 (𝐴 = ∅ → (𝐴 × 𝐶) = ∅)
109eqeq1d 2653 . . . . . . . 8 (𝐴 = ∅ → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ ∅ = (𝐵 × 𝐶)))
11 eqcom 2658 . . . . . . . 8 (∅ = (𝐵 × 𝐶) ↔ (𝐵 × 𝐶) = ∅)
1210, 11syl6bb 276 . . . . . . 7 (𝐴 = ∅ → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ (𝐵 × 𝐶) = ∅))
1312adantr 480 . . . . . 6 ((𝐴 = ∅ ∧ 𝐶 ≠ ∅) → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ (𝐵 × 𝐶) = ∅))
14 df-ne 2824 . . . . . . . 8 (𝐶 ≠ ∅ ↔ ¬ 𝐶 = ∅)
15 xpeq0 5589 . . . . . . . . 9 ((𝐵 × 𝐶) = ∅ ↔ (𝐵 = ∅ ∨ 𝐶 = ∅))
16 orel2 397 . . . . . . . . 9 𝐶 = ∅ → ((𝐵 = ∅ ∨ 𝐶 = ∅) → 𝐵 = ∅))
1715, 16syl5bi 232 . . . . . . . 8 𝐶 = ∅ → ((𝐵 × 𝐶) = ∅ → 𝐵 = ∅))
1814, 17sylbi 207 . . . . . . 7 (𝐶 ≠ ∅ → ((𝐵 × 𝐶) = ∅ → 𝐵 = ∅))
1918adantl 481 . . . . . 6 ((𝐴 = ∅ ∧ 𝐶 ≠ ∅) → ((𝐵 × 𝐶) = ∅ → 𝐵 = ∅))
2013, 19sylbid 230 . . . . 5 ((𝐴 = ∅ ∧ 𝐶 ≠ ∅) → ((𝐴 × 𝐶) = (𝐵 × 𝐶) → 𝐵 = ∅))
21 eqtr3 2672 . . . . 5 ((𝐴 = ∅ ∧ 𝐵 = ∅) → 𝐴 = 𝐵)
226, 20, 21syl6an 567 . . . 4 ((𝐴 = ∅ ∧ 𝐶 ≠ ∅) → ((𝐴 × 𝐶) = (𝐵 × 𝐶) → 𝐴 = 𝐵))
23 xpeq1 5157 . . . 4 (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶))
2422, 23impbid1 215 . . 3 ((𝐴 = ∅ ∧ 𝐶 ≠ ∅) → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵))
255, 24sylanb 488 . 2 ((¬ 𝐴 ≠ ∅ ∧ 𝐶 ≠ ∅) → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵))
264, 25pm2.61ian 848 1 (𝐶 ≠ ∅ → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1523  wne 2823  c0 3948   × cxp 5141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-xp 5149  df-rel 5150  df-cnv 5151  df-dm 5153  df-rn 5154
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator