MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpccofval Structured version   Visualization version   GIF version

Theorem xpccofval 16743
Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
xpccofval.t 𝑇 = (𝐶 ×c 𝐷)
xpccofval.b 𝐵 = (Base‘𝑇)
xpccofval.k 𝐾 = (Hom ‘𝑇)
xpccofval.o1 · = (comp‘𝐶)
xpccofval.o2 = (comp‘𝐷)
xpccofval.o 𝑂 = (comp‘𝑇)
Assertion
Ref Expression
xpccofval 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝐵   𝐶,𝑓,𝑔,𝑥,𝑦   𝐷,𝑓,𝑔,𝑥,𝑦   · ,𝑓,𝑔,𝑥,𝑦   ,𝑓,𝑔,𝑥,𝑦   𝑓,𝐾,𝑔,𝑥,𝑦   𝑥,𝑂,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑓,𝑔)   𝑂(𝑓,𝑔)

Proof of Theorem xpccofval
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpccofval.t . . . 4 𝑇 = (𝐶 ×c 𝐷)
2 eqid 2621 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2621 . . . 4 (Base‘𝐷) = (Base‘𝐷)
4 eqid 2621 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
5 eqid 2621 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
6 xpccofval.o1 . . . 4 · = (comp‘𝐶)
7 xpccofval.o2 . . . 4 = (comp‘𝐷)
8 simpl 473 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐶 ∈ V)
9 simpr 477 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐷 ∈ V)
10 xpccofval.b . . . . . 6 𝐵 = (Base‘𝑇)
111, 2, 3xpcbas 16739 . . . . . 6 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘𝑇)
1210, 11eqtr4i 2646 . . . . 5 𝐵 = ((Base‘𝐶) × (Base‘𝐷))
1312a1i 11 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐵 = ((Base‘𝐶) × (Base‘𝐷)))
14 xpccofval.k . . . . . 6 𝐾 = (Hom ‘𝑇)
151, 10, 4, 5, 14xpchomfval 16740 . . . . 5 𝐾 = (𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))
1615a1i 11 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐾 = (𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣)))))
17 eqidd 2622 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩)) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩)))
181, 2, 3, 4, 5, 6, 7, 8, 9, 13, 16, 17xpcval 16738 . . 3 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐾⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩))⟩})
19 catstr 16538 . . 3 {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐾⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩))⟩} Struct ⟨1, 15⟩
20 ccoid 15998 . . 3 comp = Slot (comp‘ndx)
21 snsstp3 4317 . . 3 {⟨(comp‘ndx), (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩))⟩} ⊆ {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐾⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩))⟩}
22 fvex 6158 . . . . . . 7 (Base‘𝑇) ∈ V
2310, 22eqeltri 2694 . . . . . 6 𝐵 ∈ V
2423, 23xpex 6915 . . . . 5 (𝐵 × 𝐵) ∈ V
2524, 23mpt2ex 7192 . . . 4 (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩)) ∈ V
2625a1i 11 . . 3 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩)) ∈ V)
27 xpccofval.o . . 3 𝑂 = (comp‘𝑇)
2818, 19, 20, 21, 26, 27strfv3 15829 . 2 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩)))
29 mpt20 6678 . . . 4 (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩)) = ∅
3029eqcomi 2630 . . 3 ∅ = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩))
31 fnxpc 16737 . . . . . . . 8 ×c Fn (V × V)
32 fndm 5948 . . . . . . . 8 ( ×c Fn (V × V) → dom ×c = (V × V))
3331, 32ax-mp 5 . . . . . . 7 dom ×c = (V × V)
3433ndmov 6771 . . . . . 6 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 ×c 𝐷) = ∅)
351, 34syl5eq 2667 . . . . 5 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = ∅)
3635fveq2d 6152 . . . 4 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (comp‘𝑇) = (comp‘∅))
3720str0 15832 . . . 4 ∅ = (comp‘∅)
3836, 27, 373eqtr4g 2680 . . 3 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑂 = ∅)
3935fveq2d 6152 . . . . . . 7 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (Base‘𝑇) = (Base‘∅))
40 base0 15833 . . . . . . 7 ∅ = (Base‘∅)
4139, 10, 403eqtr4g 2680 . . . . . 6 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐵 = ∅)
4241xpeq2d 5099 . . . . 5 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐵 × 𝐵) = (𝐵 × ∅))
43 xp0 5511 . . . . 5 (𝐵 × ∅) = ∅
4442, 43syl6eq 2671 . . . 4 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐵 × 𝐵) = ∅)
45 eqidd 2622 . . . 4 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩) = (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩))
4644, 41, 45mpt2eq123dv 6670 . . 3 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩)) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩)))
4730, 38, 463eqtr4a 2681 . 2 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩)))
4828, 47pm2.61i 176 1 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384   = wceq 1480  wcel 1987  Vcvv 3186  c0 3891  {ctp 4152  cop 4154   × cxp 5072  dom cdm 5074   Fn wfn 5842  cfv 5847  (class class class)co 6604  cmpt2 6606  1st c1st 7111  2nd c2nd 7112  1c1 9881  5c5 11017  cdc 11437  ndxcnx 15778  Basecbs 15781  Hom chom 15873  compcco 15874   ×c cxpc 16729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-hom 15887  df-cco 15888  df-xpc 16733
This theorem is referenced by:  xpcco  16744
  Copyright terms: Public domain W3C validator