MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcid Structured version   Visualization version   GIF version

Theorem xpcid 17427
Description: The identity morphism in the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
xpccat.t 𝑇 = (𝐶 ×c 𝐷)
xpccat.c (𝜑𝐶 ∈ Cat)
xpccat.d (𝜑𝐷 ∈ Cat)
xpccat.x 𝑋 = (Base‘𝐶)
xpccat.y 𝑌 = (Base‘𝐷)
xpccat.i 𝐼 = (Id‘𝐶)
xpccat.j 𝐽 = (Id‘𝐷)
xpcid.1 1 = (Id‘𝑇)
xpcid.r (𝜑𝑅𝑋)
xpcid.s (𝜑𝑆𝑌)
Assertion
Ref Expression
xpcid (𝜑 → ( 1 ‘⟨𝑅, 𝑆⟩) = ⟨(𝐼𝑅), (𝐽𝑆)⟩)

Proof of Theorem xpcid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7148 . 2 (𝑅 1 𝑆) = ( 1 ‘⟨𝑅, 𝑆⟩)
2 xpcid.1 . . . 4 1 = (Id‘𝑇)
3 xpccat.t . . . . . 6 𝑇 = (𝐶 ×c 𝐷)
4 xpccat.c . . . . . 6 (𝜑𝐶 ∈ Cat)
5 xpccat.d . . . . . 6 (𝜑𝐷 ∈ Cat)
6 xpccat.x . . . . . 6 𝑋 = (Base‘𝐶)
7 xpccat.y . . . . . 6 𝑌 = (Base‘𝐷)
8 xpccat.i . . . . . 6 𝐼 = (Id‘𝐶)
9 xpccat.j . . . . . 6 𝐽 = (Id‘𝐷)
103, 4, 5, 6, 7, 8, 9xpccatid 17426 . . . . 5 (𝜑 → (𝑇 ∈ Cat ∧ (Id‘𝑇) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨(𝐼𝑥), (𝐽𝑦)⟩)))
1110simprd 496 . . . 4 (𝜑 → (Id‘𝑇) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨(𝐼𝑥), (𝐽𝑦)⟩))
122, 11syl5eq 2865 . . 3 (𝜑1 = (𝑥𝑋, 𝑦𝑌 ↦ ⟨(𝐼𝑥), (𝐽𝑦)⟩))
13 simprl 767 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑅𝑦 = 𝑆)) → 𝑥 = 𝑅)
1413fveq2d 6667 . . . 4 ((𝜑 ∧ (𝑥 = 𝑅𝑦 = 𝑆)) → (𝐼𝑥) = (𝐼𝑅))
15 simprr 769 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑅𝑦 = 𝑆)) → 𝑦 = 𝑆)
1615fveq2d 6667 . . . 4 ((𝜑 ∧ (𝑥 = 𝑅𝑦 = 𝑆)) → (𝐽𝑦) = (𝐽𝑆))
1714, 16opeq12d 4803 . . 3 ((𝜑 ∧ (𝑥 = 𝑅𝑦 = 𝑆)) → ⟨(𝐼𝑥), (𝐽𝑦)⟩ = ⟨(𝐼𝑅), (𝐽𝑆)⟩)
18 xpcid.r . . 3 (𝜑𝑅𝑋)
19 xpcid.s . . 3 (𝜑𝑆𝑌)
20 opex 5347 . . . 4 ⟨(𝐼𝑅), (𝐽𝑆)⟩ ∈ V
2120a1i 11 . . 3 (𝜑 → ⟨(𝐼𝑅), (𝐽𝑆)⟩ ∈ V)
2212, 17, 18, 19, 21ovmpod 7291 . 2 (𝜑 → (𝑅 1 𝑆) = ⟨(𝐼𝑅), (𝐽𝑆)⟩)
231, 22syl5eqr 2867 1 (𝜑 → ( 1 ‘⟨𝑅, 𝑆⟩) = ⟨(𝐼𝑅), (𝐽𝑆)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  Vcvv 3492  cop 4563  cfv 6348  (class class class)co 7145  cmpo 7147  Basecbs 16471  Catccat 16923  Idccid 16924   ×c cxpc 17406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-hom 16577  df-cco 16578  df-cat 16927  df-cid 16928  df-xpc 17410
This theorem is referenced by:  1stfcl  17435  2ndfcl  17436  prfcl  17441  evlfcl  17460  curf1cl  17466  curfcl  17470  hofcl  17497
  Copyright terms: Public domain W3C validator