Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpdom1 Structured version   Visualization version   GIF version

Theorem xpdom1 8056
 Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by NM, 29-Mar-2006.) (Revised by Mario Carneiro, 7-May-2015.)
Hypothesis
Ref Expression
xpdom1.2 𝐶 ∈ V
Assertion
Ref Expression
xpdom1 (𝐴𝐵 → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))

Proof of Theorem xpdom1
StepHypRef Expression
1 xpdom1.2 . 2 𝐶 ∈ V
2 xpdom1g 8054 . 2 ((𝐶 ∈ V ∧ 𝐴𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
31, 2mpan 706 1 (𝐴𝐵 → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1989  Vcvv 3198   class class class wbr 4651   × cxp 5110   ≼ cdom 7950 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-1st 7165  df-2nd 7166  df-en 7953  df-dom 7954 This theorem is referenced by:  cdadom1  9005  uniimadom  9363  unirnfdomd  9386  alephreg  9401  inar1  9594  2ndcctbss  21252  tx1stc  21447  tx2ndc  21448  mbfimaopnlem  23416
 Copyright terms: Public domain W3C validator