MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpdom2g Structured version   Visualization version   GIF version

Theorem xpdom2g 7918
Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
xpdom2g ((𝐶𝑉𝐴𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))

Proof of Theorem xpdom2g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xpeq1 5042 . . . . 5 (𝑥 = 𝐶 → (𝑥 × 𝐴) = (𝐶 × 𝐴))
2 xpeq1 5042 . . . . 5 (𝑥 = 𝐶 → (𝑥 × 𝐵) = (𝐶 × 𝐵))
31, 2breq12d 4590 . . . 4 (𝑥 = 𝐶 → ((𝑥 × 𝐴) ≼ (𝑥 × 𝐵) ↔ (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)))
43imbi2d 328 . . 3 (𝑥 = 𝐶 → ((𝐴𝐵 → (𝑥 × 𝐴) ≼ (𝑥 × 𝐵)) ↔ (𝐴𝐵 → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))))
5 vex 3175 . . . 4 𝑥 ∈ V
65xpdom2 7917 . . 3 (𝐴𝐵 → (𝑥 × 𝐴) ≼ (𝑥 × 𝐵))
74, 6vtoclg 3238 . 2 (𝐶𝑉 → (𝐴𝐵 → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)))
87imp 443 1 ((𝐶𝑉𝐴𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976   class class class wbr 4577   × cxp 5026  cdom 7816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fv 5798  df-dom 7820
This theorem is referenced by:  xpdom1g  7919  xpen  7985  infcdaabs  8888  infxpdom  8893  fin56  9075  unirnfdomd  9245  pwcdandom  9345  gchxpidm  9347  gchhar  9357  fnct  28682
  Copyright terms: Public domain W3C validator