![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpdom2g | Structured version Visualization version GIF version |
Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
xpdom2g | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 5157 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 × 𝐴) = (𝐶 × 𝐴)) | |
2 | xpeq1 5157 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 × 𝐵) = (𝐶 × 𝐵)) | |
3 | 1, 2 | breq12d 4698 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝑥 × 𝐴) ≼ (𝑥 × 𝐵) ↔ (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))) |
4 | 3 | imbi2d 329 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝐴 ≼ 𝐵 → (𝑥 × 𝐴) ≼ (𝑥 × 𝐵)) ↔ (𝐴 ≼ 𝐵 → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)))) |
5 | vex 3234 | . . . 4 ⊢ 𝑥 ∈ V | |
6 | 5 | xpdom2 8096 | . . 3 ⊢ (𝐴 ≼ 𝐵 → (𝑥 × 𝐴) ≼ (𝑥 × 𝐵)) |
7 | 4, 6 | vtoclg 3297 | . 2 ⊢ (𝐶 ∈ 𝑉 → (𝐴 ≼ 𝐵 → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))) |
8 | 7 | imp 444 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 class class class wbr 4685 × cxp 5141 ≼ cdom 7995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fv 5934 df-dom 7999 |
This theorem is referenced by: xpdom1g 8098 xpen 8164 infcdaabs 9066 infxpdom 9071 fin56 9253 fnct 9397 unirnfdomd 9427 pwcdandom 9527 gchxpidm 9529 gchhar 9539 |
Copyright terms: Public domain | W3C validator |